A386734 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)} dx dy dz, where {} denotes fractional part.
1, 8, 3, 8, 4, 3, 7, 6, 4, 0, 6, 7, 0, 2, 4, 6, 1, 2, 0, 7, 5, 3, 4, 1, 7, 5, 6, 6, 4, 6, 5, 8, 1, 2, 6, 7, 0, 7, 8, 2, 1, 3, 5, 5, 7, 8, 7, 0, 5, 9, 1, 5, 6, 7, 1, 8, 5, 9, 0, 8, 6, 6, 6, 7, 3, 7, 4, 4, 3, 4, 8, 4, 7, 7, 2, 4, 1, 5, 5, 1, 2, 2, 0, 2, 8, 6, 2, 9, 9, 7, 8, 7, 8, 6, 1, 4, 6, 4, 5, 2, 2, 0, 7, 5, 6
Offset: 0
Examples
0.18384376406702461207534175664658126707821355787059...
Links
- Ovidiu Furdui, Multiple Fractional Part Integrals and Euler's Constant, Miskolc Mathematical Notes, Vol. 17, No. 1 (2016), pp. 255-266.
Programs
-
Mathematica
RealDigits[9*Log[3]/2 - 6*Log[2] - Zeta[3]/2, 10, 120][[1]]
-
PARI
9*log(3)/2 - 6*log(2) - zeta(3)/2
Formula
Equals 9*log(3)/2 - 6*log(2) - zeta(3)/2.