A386746 a(n) = n^3*sigma_2(n).
0, 1, 40, 270, 1344, 3250, 10800, 17150, 43520, 66339, 130000, 162382, 362880, 373490, 686000, 877500, 1396736, 1424770, 2653560, 2482958, 4368000, 4630500, 6495280, 6448510, 11750400, 10171875, 14939600, 16140060, 23049600, 20535538, 35100000, 28658942, 44728320
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..9000
Programs
-
Magma
[0] cat [n^3*DivisorSigma(2, n): n in [1..35]]; // Vincenzo Librandi, Aug 02 2025
-
Mathematica
Table[n^3*DivisorSigma[2, n], {n, 0, 40}] nmax = 40; CoefficientList[Series[Sum[k^5*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=1} k^5*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4. - Amiram Eldar, Aug 01 2025
a(n) = n^3*A001157(n).
Dirichlet g.f.: zeta(s-3)*zeta(s-5). - R. J. Mathar, Aug 03 2025