A386747 a(n) = n^2*sigma_4(n).
0, 1, 68, 738, 4368, 15650, 50184, 117698, 279616, 538083, 1064200, 1771682, 3223584, 4826978, 8003464, 11549700, 17895680, 24137858, 36589644, 47046242, 68359200, 86861124, 120474376, 148036418, 206356608, 244531875, 328234504, 392263236, 514104864, 594824162
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..9000
Programs
-
Magma
[0] cat [n^2*DivisorSigma(4, n): n in [1..35]]; // Vincenzo Librandi, Aug 02 2025
-
Mathematica
Table[n^2*DivisorSigma[4, n], {n, 0, 40}] nmax = 40; CoefficientList[Series[Sum[k^6*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=1} k^6*x^k*(1 + x^k)/(1 - x^k)^3. - Amiram Eldar, Aug 01 2025
a(n) = n^2*A001159(n).
Dirichlet g.f.: zeta(s-2)*zeta(s-6).- R. J. Mathar, Aug 03 2025