A386748 a(n) = n^3*sigma_4(n).
0, 1, 136, 2214, 17472, 78250, 301104, 823886, 2236928, 4842747, 10642000, 19488502, 38683008, 62750714, 112048496, 173245500, 286330880, 410343586, 658613592, 893878598, 1367184000, 1824083604, 2650436272, 3404837614, 4952558592, 6113296875, 8534097104, 10591107372
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..8000
Programs
-
Magma
[0] cat [n^3*DivisorSigma(4, n): n in [1..35]]; // Vincenzo Librandi, Aug 02 2025
-
Mathematica
Table[n^3*DivisorSigma[4, n], {n, 0, 40}] nmax = 40; CoefficientList[Series[Sum[k^7*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=1} k^7*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4. - Amiram Eldar, Aug 01 2025
a(n) = n^3*A001159(n).
Dirichlet g.f.: zeta(s-3)*zeta(s-7). - R. J. Mathar, Aug 03 2025