cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386520 Column sums of the triangle in A386755.

Original entry on oeis.org

1, 5, 13, 13, 31, 35, 57, 61, 85, 85, 111, 99, 235, 89, 353, 173, 171, 341, 343, 229, 489, 423, 415, 435, 661, 525, 535, 559, 1161, 427, 931, 653, 1201, 787, 941, 885, 1629, 537, 1443, 1839, 1723, 931, 1119, 1525, 2415, 741, 2257, 2327, 1947, 2005, 2767, 1131, 3181, 1055, 3131, 2147
Offset: 1

Views

Author

Tamas Sandor Nagy, Jul 24 2025

Keywords

Comments

It appears that A007952(n) is the index of the row where n first appears.
It appears that A007952(n)-1 is the index of the row where the last nonzero term of the n-th column is seen. - Michel Marcus, Aug 02 2025

Examples

			Triangle whose columns are summed.
  m/n| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
  ----------------------------------------------------------------
   1 | 1
   2 |    1
   3 |    2  1
   4 |    2     1
   5 |       3  2  1
   6 |       3  2     1
   7 |       3        2  1
   8 |       3        2     1
   9 |          4     3     2  1
  10 |          4     3     2     1
  11 |             5        4  3  2  1
  12 |             5        4  3  2     1
  13 |             5        4  3        2  1
  14 |             5        4  3        2     1
  15 |             5        4           3     2  1
  16 |             5        4           3     2     1
  17 |                6           5     4        3  2  1
  18 |                6           5     4        3  2     1
  19 |                6           5     4        3        2  1
  20 |                6           5     4        3        2     1
  ...
The completed column for n=5 is definitely fully visible here because in column 6 for n=6 the divisor k=6 already appeared. That means that column 5 cannot have more divisors in it under the last k=5 in row 17 because in that row only k=7 may follow k=6 in theory, but 7 does not divide 5. So, all similarly proven, definitely fully visible completed columns in this sample array are readily summable by sight. E.g. column 5: a(5) = 1 + 5 + 5 + 5 + 5 + 5 + 5 = 31.
		

Crossrefs

Cf. A386755.
Cf. A007952 (row number where k=n first appears).

Programs

  • PARI
    \\ uses row(n) from A386755
    a(n) = my(ok=1, k=1, last=-1, s=0, r); while(ok, r=row(k); if (#r >= n, s+=r[n]); k++; if (#r>=n, if ((last==n) && (r[n]==0), ok = 0, last = r[n]))); s; \\ Michel Marcus, Aug 02 2025
    
  • PARI
    \\ uses row(n) from A386755
    lista(nn) = my(ok=1, k=1, vlast=vector(nn,i,-1), vs=vector(nn)); while(ok, my(r=row(k)); for (i=1, nn, if (#r>=i, vs[i]+=r[i])); k++; my(nbok=0); for (i=1, nn, if (#r>=i, if ((vlast[i]==i) && (r[i]==0), nbok++, vlast[i] = r[i]))); if (nbok == nn, ok = 0);); vs; \\ Michel Marcus, Aug 02 2025

A386949 Irregular triangle whose n-th row lists the nonzero terms of the n-th column of A386755.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 3, 3, 1, 2, 2, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 2, 2, 3, 3, 6, 6, 6, 6, 1, 7, 7, 7, 7, 7, 7, 7, 7, 1, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 1, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 1, 2, 2, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Michel Marcus, Aug 10 2025

Keywords

Examples

			Triangle begins:
  1;
  1, 2, 2;
  1, 3, 3, 3, 3;
  1, 2, 2, 4, 4;
  1, 5, 5, 5, 5, 5, 5;
  1, 2, 2, 3, 3, 6, 6, 6, 6;
  1, 7, 7, 7, 7, 7, 7, 7, 7;
  1, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8;
  1, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9;
  1, 2, 2, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10;
  ...
		

Crossrefs

Cf. A386755 (original triangle), A386520 (row sums).
Cf. A027750.

Programs

  • PARI
    orow(n) = my(v=vector(n), m=n); for(k=1, n, my(keepm = m); while(m%k, m--); if (m == 0, keepm=m, v[m] = k; m--); ); v; \\ A386755
    nrow(n) = my(ok=1, k=1, last=-1, list=List(), r); while(ok, r=row(k); if ((#r >= n) && r[n], listput(list, r[n])); k++; if (#r>=n, if ((last==n) && (r[n]==0), ok = 0, last = r[n]))); Vec(list);
Showing 1-2 of 2 results.