A386762 Perfect powers of nonsquarefree numbers k that are not squareful.
144, 324, 400, 576, 784, 1600, 1728, 1936, 2025, 2304, 2500, 2704, 2916, 3136, 3600, 3969, 4624, 5625, 5776, 5832, 6400, 7056, 7744, 8000, 8100, 8464, 9216, 9604, 9801, 10816, 12544, 13456, 13689, 13824, 14400, 15376, 15876, 17424, 18225, 18496, 19600, 20736, 21609
Offset: 1
Examples
Table of n, a(n) for n = 1..12: n a(n) ----------------------------- 1 144 = 12^2 = 2^4 * 3^2 2 324 = 18^2 = 2^2 * 3^4 3 400 = 20^2 = 2^4 * 5^2 4 576 = 24^2 = 2^6 * 3^2 5 784 = 28^2 = 2^4 * 7^2 6 1600 = 40^2 = 2^6 * 5^2 7 1728 = 12^3 = 2^6 * 3^3 8 1936 = 44^2 = 2^4 * 11^2 9 2025 = 45^2 = 3^4 * 5^2 10 2304 = 48^2 = 2^8 * 3^2 11 2500 = 50^2 = 2^2 * 5^4 12 2704 = 52^2 = 2^4 * 13^2
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 2^15; i = 1; k = 2; MapIndexed[Set[S[First[#2]], #1] &, Select[Range@ Sqrt[nn], 1 == Min[#] < Max[#] &@ FactorInteger[#][[All, -1]] &] ]; Union@ Reap[While[j = 2; While[S[i]^j < nn, Sow[S[i]^j]; j++]; j > 2, k++; i++] ][[-1, 1]]
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A386762(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while f(kmin) < kmin: kmin >>= 1 kmin = max(kmin,kmax >> 1) while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x): c, l, j = 1+x-squarefreepi(integer_nthroot(x,3)[0])-squarefreepi(x), 0, isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c += j*(l-w) l, j = w, isqrt(x//k2**3) return c+l def f(x): return n+x-sum(g(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())) return bisection(f,n,n) # Chai Wah Wu, Aug 11 2025
Comments