cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386762 Perfect powers of nonsquarefree numbers k that are not squareful.

Original entry on oeis.org

144, 324, 400, 576, 784, 1600, 1728, 1936, 2025, 2304, 2500, 2704, 2916, 3136, 3600, 3969, 4624, 5625, 5776, 5832, 6400, 7056, 7744, 8000, 8100, 8464, 9216, 9604, 9801, 10816, 12544, 13456, 13689, 13824, 14400, 15376, 15876, 17424, 18225, 18496, 19600, 20736, 21609
Offset: 1

Views

Author

Michael De Vlieger, Aug 02 2025

Keywords

Comments

A131605 is the union of this sequence, A303606, and A383394, where the three sequences do not intersect one another.
A001597 is the union of A131605 and A246547.
Superset of A368508 (i.e., perfect powers of superprimorials that are not powers of 2).

Examples

			Table of n, a(n) for n = 1..12:
 n    a(n)
-----------------------------
 1    144 = 12^2 = 2^4 *  3^2
 2    324 = 18^2 = 2^2 *  3^4
 3    400 = 20^2 = 2^4 *  5^2
 4    576 = 24^2 = 2^6 *  3^2
 5    784 = 28^2 = 2^4 *  7^2
 6   1600 = 40^2 = 2^6 *  5^2
 7   1728 = 12^3 = 2^6 *  3^3
 8   1936 = 44^2 = 2^4 * 11^2
 9   2025 = 45^2 = 3^4 *  5^2
10   2304 = 48^2 = 2^8 *  3^2
11   2500 = 50^2 = 2^2 *  5^4
12   2704 = 52^2 = 2^4 * 13^2
		

Crossrefs

Programs

  • Mathematica
    nn = 2^15; i = 1; k = 2; MapIndexed[Set[S[First[#2]], #1] &, Select[Range@ Sqrt[nn], 1 == Min[#] < Max[#] &@ FactorInteger[#][[All, -1]] &] ]; Union@ Reap[While[j = 2; While[S[i]^j < nn, Sow[S[i]^j]; j++]; j > 2, k++; i++] ][[-1, 1]]
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A386762(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while f(kmin) < kmin: kmin >>= 1		
            kmin = max(kmin,kmax >> 1)
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x):
            c, l, j = 1+x-squarefreepi(integer_nthroot(x,3)[0])-squarefreepi(x), 0, isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c += j*(l-w)
                l, j = w, isqrt(x//k2**3)
            return c+l
        def f(x): return n+x-sum(g(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length()))
        return bisection(f,n,n) # Chai Wah Wu, Aug 11 2025