A386784 a(n) = n^4*sigma_4(n).
0, 1, 272, 6642, 69888, 391250, 1806624, 5767202, 17895424, 43584723, 106420000, 214373522, 464196096, 815759282, 1568678944, 2598682500, 4581294080, 6975840962, 11855044656, 16983693362, 27343680000, 38305755684, 58309597984, 78311265122, 118861406208, 152832421875
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
[0] cat [n^4*DivisorSigma(4, n): n in [1..35]]; // Vincenzo Librandi, Aug 03 2025
-
Mathematica
Table[n^4*DivisorSigma[4, n], {n, 0, 40}] nmax = 40; CoefficientList[Series[Sum[k^4*x^k*(1 + 247*x^k + 4293*x^(2*k) + 15619*x^(3*k) + 15619*x^(4*k) + 4293*x^(5*k) + 247*x^(6*k) + x^(7*k))/(1 - x^k)^9, {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=1} k^4*x^k*(1 + 247*x^k + 4293*x^(2*k) + 15619*x^(3*k) + 15619*x^(4*k) + 4293*x^(5*k) + 247*x^(6*k) + x^(7*k))/(1 - x^k)^9.
a(n) = n^4*A001159(n).
Dirichlet g.f.: zeta(s-4)*zeta(s-8). - R. J. Mathar, Aug 03 2025