cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386796 Numbers that have exactly one exponent in their prime factorization that is equal to 2.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 164, 169, 171, 172, 175, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 260, 261, 268
Offset: 1

Views

Author

Amiram Eldar, Aug 02 2025

Keywords

Comments

First differs from its subsequence A060687 at n = 16: a(16) = 72 is not a term of A060687.
Differs from A286228 by having the terms 60, 72, 84, 90, ..., and not having the term 1.
Numbers k such that A369427(k) = 1.
The asymptotic density of this sequence is Product_{p primes} (1 - 1/p^2 + 1/p^3) * Sum_{p prime} (p-1)/(p^3 - p + 1) = 0.22661832022705616779... (the product is A330596) (Elma and Martin, 2024).

Crossrefs

A060687 is a subsequence.
Numbers that have exactly one exponent in their prime factorization that is equal to k: A119251 (k=1), this sequence (k=2), A386800 (k=3), A386804 (k=4), A386808 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 2: A337050 (m=0), this sequence (m=1), A386797 (m=2), A386798 (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[300], s[#] == 1 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 2, 1, 0), factor(k)[, 2])) == 1;