cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A337050 Numbers without an exponent 2 in their prime factorization.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2020

Keywords

Comments

Numbers k such that the powerful part (A057521) of k is a cubefull number (A036966).
Numbers k such that A003557(k) = k/A007947(k) is a powerful number (A001694).
The asymptotic density of this sequence is Product_{primes p} (1 - 1/p^2 + 1/p^3) = 0.748535... (A330596).
A304364 is apparently a subsequence.
These numbers were named semi-2-free integers by Suryanarayana (1971). - Amiram Eldar, Dec 29 2020

Examples

			6 = 2^1 * 3^1 is a term since none of the exponents in its prime factorization is equal to 2.
9 = 3^2 is not a term since it has an exponent 2 in its prime factorization.
		

Crossrefs

Complement of A038109.
A005117, A036537, A036966, A048109, A175496, A268335 and A336590 are subsequences.
Numbers without an exponent k in their prime factorization: A001694 (k=1), this sequence (k=2), A386799 (k=3), A386803 (k=4), A386807 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 2: this sequence (m=0), A386796 (m=1), A386797 (m=2), A386798 (m=3).

Programs

  • Maple
    q:= n-> andmap(i-> i[2]<>2, ifactors(n)[2]):
    select(q, [$1..100])[];  # Alois P. Heinz, Aug 12 2020
  • Mathematica
    Select[Range[100], !MemberQ[FactorInteger[#][[;;, 2]], 2] &]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 2, return(0))); 1; } \\ Amiram Eldar, Oct 21 2023

Formula

Sum_{n>=1} 1/a(n)^s = zeta(s) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)), for s > 1. - Amiram Eldar, Oct 21 2023

A386797 Numbers that have exactly two exponents in their prime factorization that are equal to 2.

Original entry on oeis.org

36, 100, 180, 196, 225, 252, 300, 396, 441, 450, 468, 484, 588, 612, 676, 684, 700, 828, 882, 980, 1044, 1089, 1100, 1116, 1156, 1225, 1260, 1300, 1332, 1444, 1452, 1476, 1521, 1548, 1575, 1692, 1700, 1800, 1900, 1908, 1980, 2028, 2100, 2116, 2124, 2156, 2178, 2196
Offset: 1

Views

Author

Amiram Eldar, Aug 02 2025

Keywords

Comments

First differs from its subsequence A375144 at n = 38: a(38) = 1800 = 2^3 * 3^2 * 5^2 is not a term of A375144.
Numbers k such that A369427(k) = 2.
The asymptotic density of this sequence is Product_{p primes} (1 - 1/p^2 + 1/p^3) * ((Sum_{p prime} (p-1)/(p^3 - p + 1))^2 - Sum_{p prime} ((p-1)^2/(p^3 - p + 1)^2)) / 2 = 0.023701044250873975412... (the product is A330596) (Elma and Martin, 2024).

Crossrefs

A375144 is a subsequence.
Numbers that have exactly two exponents in their prime factorization that are equal to k: this sequence (k=2), A386801 (k=3), A386805 (k=4), A386809 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 2: A337050 (m=0), A386796 (m=1), this sequence (m=2), A386798 (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[2200], s[#] == 2 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 2, 1, 0), factor(k)[, 2])) == 2;

A386798 Numbers that have exactly three exponents in their prime factorization that are equal to 2.

Original entry on oeis.org

900, 1764, 4356, 4900, 6084, 6300, 8820, 9900, 10404, 11025, 11700, 12100, 12996, 14700, 15300, 16900, 17100, 19044, 19404, 20700, 21780, 22050, 22932, 23716, 26100, 27225, 27900, 28900, 29988, 30276, 30420, 30492, 33124, 33300, 33516, 34596, 36100, 36300, 36900, 38025, 38700
Offset: 1

Views

Author

Amiram Eldar, Aug 02 2025

Keywords

Comments

Numbers k such that A369427(k) = 2.
The asymptotic density of this sequence is Product_{p primes} (1 - 1/p^2 + 1/p^3) * (s(1)^3 + 3*s(1)*s(2) + 2*s(3)) / 6 = 0.0011175284878980531468... (the product is A330596), where s(m) = (-1)^(m-1) * Sum_{p prime} (1/(p^3/(p-1)-1))^m (Elma and Martin, 2024).

Crossrefs

Numbers that have exactly three exponents in their prime factorization that are equal to k: this sequence (k=2), A386802 (k=3), A386806 (k=4), A386810 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 2: A337050 (m=0), A386796 (m=1), A386797 (m=2), this sequence (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[40000], s[#] == 3 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 2, 1, 0), factor(k)[, 2])) == 3;

A386800 Numbers that have exactly one exponent in their prime factorization that is equal to 3.

Original entry on oeis.org

8, 24, 27, 40, 54, 56, 72, 88, 104, 108, 120, 125, 135, 136, 152, 168, 184, 189, 200, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 360, 375, 376, 378, 392, 408, 424, 432, 440, 456, 459, 472, 488, 500, 504, 513, 520, 536, 540, 552, 568, 584
Offset: 1

Views

Author

Amiram Eldar, Aug 03 2025

Keywords

Comments

First differs from its subsequence A381315 at n = 40: a(40) = 432 = 2^4 * 3^3 is not a term of A381315.
Numbers k such that A295883(k) = 1.
The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^3 + 1/p^4) * Sum_{p prime} (p-1)/(p^4 - p + 1) = 0.092831691827595439609... (Elma and Martin, 2024).

Crossrefs

A381315 is subsequence.
Cf. A295883.
Numbers that have exactly one exponent in their prime factorization that is equal to k: A119251 (k=1), A386796 (k=2), this sequence (k=3), A386804 (k=4), A386808 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 3: A386799 (m=0), this sequence (m=1), A386801 (m=2), A386802 (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[300], s[#] == 1 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 3, 1, 0), factor(k)[, 2])) == 1;

A386804 Numbers that have exactly one exponent in their prime factorization that is equal to 4.

Original entry on oeis.org

16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 784, 810, 816, 848, 880, 891, 912, 944, 976, 1008, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1200, 1232, 1250
Offset: 1

Views

Author

Amiram Eldar, Aug 03 2025

Keywords

Comments

Subsequence of A336595 and first differs from it at n = 21: A336595(21) = 512 = 2^9 is not a term of this sequence.
The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^4 + 1/p^5) * Sum_{p prime} (p-1)/(p^5 - p + 1) = 0.04058504714976055893... (Elma and Martin, 2024).

Crossrefs

Subsequence of A336595.
Numbers that have exactly one exponent in their prime factorization that is equal to k: A119251 (k=1), A386796 (k=2), A386800 (k=3), this sequence (k=4), A386808 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 4: A386803 (m=0), this sequence (m=1), A386805 (m=2), A386806 (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 4, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[1300], s[#] == 1 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 4, 1, 0), factor(k)[, 2])) == 1;

A386808 Numbers that have exactly one exponent in their prime factorization that is equal to 5.

Original entry on oeis.org

32, 96, 160, 224, 243, 288, 352, 416, 480, 486, 544, 608, 672, 736, 800, 864, 928, 972, 992, 1056, 1120, 1184, 1215, 1248, 1312, 1376, 1440, 1504, 1568, 1632, 1696, 1701, 1760, 1824, 1888, 1944, 1952, 2016, 2080, 2144, 2208, 2272, 2336, 2400, 2430, 2464, 2528
Offset: 1

Views

Author

Amiram Eldar, Aug 03 2025

Keywords

Comments

Subsequence of A362841 and first differs from it at n = 145: A362841(145) = 7776 = 2^5 * 3 ^ 5 is not a term of this sequence.
The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^5 + 1/p^6) * Sum_{p prime} (p-1)/(p^6 - p + 1) = 0.0185875810803524107305... (Elma and Martin, 2024).

Crossrefs

Cf. A362841.
Numbers that have exactly one exponent in their prime factorization that is equal to k: A119251 (k=1), A386796 (k=2), A386800 (k=3), A386804 (k=4), this sequence (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 5: A386807 (m=0), this sequence (m=1), A386809 (m=2), A386810 (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 5, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[3000], s[#] == 1 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 5, 1, 0), factor(k)[, 2])) == 1;
Showing 1-6 of 6 results.