A368886 The largest unitary divisor of n without an exponent 2 in its prime factorization (A337050).
1, 2, 3, 1, 5, 6, 7, 8, 1, 10, 11, 3, 13, 14, 15, 16, 17, 2, 19, 5, 21, 22, 23, 24, 1, 26, 27, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 40, 41, 42, 43, 11, 5, 46, 47, 48, 1, 2, 51, 13, 53, 54, 55, 56, 57, 58, 59, 15, 61, 62, 7, 64, 65, 66, 67, 17, 69, 70
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e == 2, 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 2, 1, f[i,1]^f[i,2]));}
-
Python
from math import prod from sympy import factorint def A368886(n): return prod(p**e for p, e in factorint(n).items() if e!=2) # Chai Wah Wu, Jan 09 2024
Formula
Multiplicative with a(p^2) = 1, and a(p^e) = p^e if e != 2.
a(n) = n / A368884(n).
a(n) >= 1, with equality if and only if n is in A062503.
a(n) <= n, with equality if and only if n is in A337050.
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^(2*s-2) + 1/p^(2*s) + 1/p^(3*s-3) - 1/p^(3*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 + 1/p^3 + 1/p^4 - 1/p^5) = 0.78357388280736936739... .
Comments