A386810 Numbers that have exactly three exponents in their prime factorization that are equal to 5.
24300000, 130691232, 170100000, 267300000, 315900000, 413100000, 461700000, 558900000, 653456160, 704700000, 753300000, 899100000, 996300000, 1044900000, 1142100000, 1190700000, 1252332576, 1287900000, 1433700000, 1437603552, 1482300000, 1628100000, 1680700000
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Ertan Elma and Greg Martin, Distribution of the number of prime factors with a given multiplicity, Canadian Mathematical Bulletin, Vol. 67, No. 4 (2024), pp. 1107-1122; arXiv preprint, arXiv:2406.04574 [math.NT], 2024.
- Index entries for sequences computed from indices in prime factorization.
Crossrefs
Programs
-
Maple
M:= 10^10: # for terms <= M B:= select(t -> ifactors(t)[2][..,2]=[1,1,1],[$1..floor(M^(1/5))]): R:= NULL: for i from 1 to nops(B) do Q:= select(t -> igcd(t,B[i]) = 1 and not member(5, ifactors(t)[2][..,2]), [$1 .. M/B[i]^5]); R:= R, op(B[i]^5 * Q); od: sort([R]); # Robert Israel, Aug 03 2025
-
Mathematica
seq[lim_] := Module[{s = {}, sqfs = Select[Range[Surd[lim, 5]], SquareFreeQ[#] && PrimeNu[#] == 3 &]}, Do[s = Join[s, sqf^5 * Select[Range[lim/sqf^5], CoprimeQ[#, sqf] && !MemberQ[FactorInteger[#][[;; , 2]], 5] &]], {sqf, sqfs}]; Union[s]]; seq[2*10^9]
-
PARI
isok(k) = vecsum(apply(x -> if(x == 5, 1, 0), factor(k)[, 2])) == 3;
Comments