cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386822 Irregular table T(n,k) = Product_{j = 1..k} prime(j)^(n-j+1), n >= 0, k = 1..n.

Original entry on oeis.org

1, 2, 4, 12, 8, 72, 360, 16, 432, 10800, 75600, 32, 2592, 324000, 15876000, 174636000, 64, 15552, 9720000, 3333960000, 403409160000, 5244319080000, 128, 93312, 291600000, 700131600000, 931875159600000, 157486901972400000, 2677277333530800000
Offset: 0

Views

Author

Michael De Vlieger, Aug 31 2025

Keywords

Comments

Proper subset of A025487, in turn a proper subset of A055932.
For n > 1, T(n,n) is in A332785.
For 1 < k < n, T(n,k) is in A286708, where A286708 is the sequence of powerful numbers (i.e., in A001694) that are not prime powers.
For n > 1 and k > 1, T(n,k) is in A126706.

Examples

			Table begins:
  n\k   1      2        3          4           5
  ----------------------------------------------
  0:    1;
  1:    2;
  2:    4,    12;
  3:    8,    72,     360;
  4:   16,   432,   10800,     75600;
  5:   32,  2592,  324000,  15876000,  174636000;
Table of n, a(n) = P(k)^m * Q(k), for n < 12, illustrating prime power factor exponents, where k = omega(a(n)) = A001221(a(n)), P = A002110, and Q = A006939:
                                     Exponents of
 n     a(n)                  k   m   2.3.5.7
---------------------------------------------------
 1       1                           .
 2       2 = P(1)^0 * Q(1)   1   0   1
 3       4 = P(1)^1 * Q(1)   1   1   2
 4      12 = P(2)^0 * Q(2)   2   0   2.1
 5       8 = P(1)^2 * Q(1)   1   2   3
 6      72 = P(2)^1 * Q(2)   2   1   3.2
 7     360 = P(3)^0 * Q(3)   3   0   3.2.1
 8      16 = P(1)^3 * Q(1)   1   3   4
 9     432 = P(2)^2 * Q(2)   2   2   4.3
10   10800 = P(3)^1 * Q(3)   3   1   4.3.2
11   75600 = P(4)^0 * Q(4)   4   0   4.3.2.1
		

Crossrefs

Programs

  • Mathematica
    Table[Product[Prime[j]^(n - j + 1), {j, k}], {n, 8}, {k, n}] // Flatten

Formula

T(0,1) = 1 by convention.
T(n,1) = A000079(n) = 2^n.
T(n,n) = A006939(n).