A386822 Irregular table T(n,k) = Product_{j = 1..k} prime(j)^(n-j+1), n >= 0, k = 1..n.
1, 2, 4, 12, 8, 72, 360, 16, 432, 10800, 75600, 32, 2592, 324000, 15876000, 174636000, 64, 15552, 9720000, 3333960000, 403409160000, 5244319080000, 128, 93312, 291600000, 700131600000, 931875159600000, 157486901972400000, 2677277333530800000
Offset: 0
Examples
Table begins: n\k 1 2 3 4 5 ---------------------------------------------- 0: 1; 1: 2; 2: 4, 12; 3: 8, 72, 360; 4: 16, 432, 10800, 75600; 5: 32, 2592, 324000, 15876000, 174636000; Table of n, a(n) = P(k)^m * Q(k), for n < 12, illustrating prime power factor exponents, where k = omega(a(n)) = A001221(a(n)), P = A002110, and Q = A006939: Exponents of n a(n) k m 2.3.5.7 --------------------------------------------------- 1 1 . 2 2 = P(1)^0 * Q(1) 1 0 1 3 4 = P(1)^1 * Q(1) 1 1 2 4 12 = P(2)^0 * Q(2) 2 0 2.1 5 8 = P(1)^2 * Q(1) 1 2 3 6 72 = P(2)^1 * Q(2) 2 1 3.2 7 360 = P(3)^0 * Q(3) 3 0 3.2.1 8 16 = P(1)^3 * Q(1) 1 3 4 9 432 = P(2)^2 * Q(2) 2 2 4.3 10 10800 = P(3)^1 * Q(3) 3 1 4.3.2 11 75600 = P(4)^0 * Q(4) 4 0 4.3.2.1
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..703 (rows n = 0..37, flattened.)
Programs
-
Mathematica
Table[Product[Prime[j]^(n - j + 1), {j, k}], {n, 8}, {k, n}] // Flatten
Comments