A386823 Triangle read by rows: T(n,k) = numerator((n^2 - k^2)/(n^2 + k^2)), where 0 <= k < n.
1, 1, 3, 1, 4, 5, 1, 15, 3, 7, 1, 12, 21, 8, 9, 1, 35, 4, 3, 5, 11, 1, 24, 45, 20, 33, 12, 13, 1, 63, 15, 55, 3, 39, 7, 15, 1, 40, 77, 4, 65, 28, 5, 16, 17, 1, 99, 12, 91, 21, 3, 8, 51, 9, 19, 1, 60, 117, 56, 105, 48, 85, 36, 57, 20, 21, 1, 143, 35, 15, 4, 119, 3, 95, 5, 7, 11, 23
Offset: 1
Examples
The triangle of the fractions begins as: 1/1; 1/1, 3/5; 1/1, 4/5, 5/13; 1/1, 15/17, 3/5, 7/25; 1/1, 12/13, 21/29, 8/17, 9/41; 1/1, 35/37, 4/5, 3/5, 5/13, 11/61; 1/1, 24/25, 45/53, 20/29, 33/65, 12/37, 13/85; ...
Links
- Stefano Spezia, First 150 rows of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=Numerator[(n^2-k^2)/(n^2+k^2)]; Table[T[n,k],{n,12},{k,0,n-1}]//Flatten
Formula
T(n,n-1) = A005804(n-1).