A386828 Least prime n < p <= 2*n^2 + 1 such that the polynomial Sum_{k=1..n} x^(n-k)/k^2 is irreducible modulo p, or 1 if such a prime p does not exist.
1, 3, 19, 13, 7, 17, 19, 13, 17, 13, 17, 31, 139, 151, 19, 181, 113, 157, 79, 89, 89, 71, 37, 31, 197, 31, 199, 149, 83, 37, 127, 59, 647, 89, 47, 47, 157, 197, 97, 79, 601, 59, 79, 67, 71, 487, 223, 577, 359, 83, 269, 269, 251, 461, 229, 67, 1777, 859, 1091, 701
Offset: 1
Keywords
Examples
a(3) = 19 since 19 = 2*3^2 + 1 is the least prime p > 3 such that the polynomial x^2 + x/2 + 1/3 is irreducible modulo p.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..300
Programs
-
Mathematica
P[n_, x_]:=P[n, x]=Sum[x^(n-k)/k^2, {k, 1, n}]; tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, PrimePi[n]+1, PrimePi[2n^2+1]}]; tab=Append[tab,1]; Label[aa]; Continue, {n,1,60}];Print[tab]
-
PARI
a(n) = forprime(p=n+1, 2*n^2+1, if (polisirreducible(Mod(sum(k=1, n, x^(n-k)/k^2), p)), return(p))); 1; \\ Michel Marcus, Aug 05 2025
Comments