cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386834 a(n) = Sum_{k=0..n} binomial(4*n+1,k) * binomial(4*n-k-1,n-k).

Original entry on oeis.org

1, 8, 111, 1738, 28701, 488412, 8473387, 148994510, 2645999673, 47349481408, 852429930567, 15421507805106, 280126256513109, 5105764838932388, 93331970924544099, 1710369544783134614, 31412304686874624113, 578023658034894471048, 10654486069487503147135
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+1, k)*binomial(4*n-k-1, n-k));

Formula

a(n) = [x^n] (1+x)^(4*n+1)/(1-x)^(3*n).
a(n) = [x^n] 1/((1-x)^2 * (1-2*x)^(3*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * (n-k+1) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} 2^k * (n-k+1) * binomial(3*n+k-1,k).
Conjecture D-finite with recurrence +3*n*(16543753*n -26995933)*(3*n-1)*(3*n-2)*a(n) +(-1669899251*n^4 -26931977989*n^3 +131963667975*n^2 -188283072995*n +85757456660)*a(n-1) +2*(-61301926003*n^4 +515926265010*n^3 -1655392333929*n^2 +2311146075302*n -1165379619540)*a(n-2) -96*(39221117*n -50949760)*(4*n-9)*(2*n-5)*(4*n-7)*a(n-3)=0. - R. J. Mathar, Aug 19 2025

A386836 a(n) = Sum_{k=0..n} binomial(3*n+2,k) * binomial(3*n-k-1,n-k).

Original entry on oeis.org

1, 7, 70, 782, 9199, 111465, 1376764, 17234600, 217891693, 2775766091, 35574777154, 458169648722, 5924747347835, 76876586813629, 1000418599504408, 13051488907037580, 170643358430006553, 2235400439909584575, 29333436132847784062, 385507257723471794774, 5073372058467119928391
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+2, k)*binomial(3*n-k-1, n-k));

Formula

a(n) = [x^n] (1+x)^(3*n+2)/(1-x)^(2*n).
a(n) = [x^n] 1/((1-x)^3 * (1-2*x)^(2*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+2,k) * binomial(n-k+2,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(2*n+k-1,k) * binomial(n-k+2,n-k).

A386835 a(n) = Sum_{k=0..n} binomial(2*n+2,k) * binomial(2*n-k-1,n-k).

Original entry on oeis.org

1, 5, 30, 198, 1375, 9843, 71876, 532220, 3981645, 30023265, 227803642, 1737227682, 13303481035, 102234258623, 787997000640, 6089345072056, 47161769198809, 365986358229645, 2845097133606422, 22151577531840830, 172710278146819959, 1348274852150114251
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n + 2, k]*Binomial[2*n - k - 1, n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(2*n-k-1, n-k));

Formula

a(n) = [x^n] (1+x)^(2*n+2)/(1-x)^n.
a(n) = [x^n] 1/((1-x)^3 * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(2*n+2,k) * binomial(n-k+2,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k-1,k) * binomial(n-k+2,n-k).
a(n) ~ 2^(3*n+5) / (27*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 06 2025

A386867 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+2,k) * binomial(4*n-k-1,n-k).

Original entry on oeis.org

1, 12, 249, 5842, 144636, 3690840, 96028606, 2532467934, 67454242092, 1810467982144, 48887478311673, 1326582594222918, 36143786784056716, 988134308856642048, 27093384379207568028, 744735869371387679158, 20516019688758402141372, 566266846186568482197840
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n+2, k)*binomial(4*n-k-1, n-k));

Formula

a(n) = [x^n] (1+x)^(4*n+2)/(1-2*x)^(3*n).
a(n) = [x^n] 1/((1-x)^3 * (1-3*x)^(3*n)).
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(4*n+2,k) * binomial(n-k+2,n-k).
a(n) = Sum_{k=0..n} 3^k * binomial(3*n+k-1,k) * binomial(n-k+2,n-k).
Showing 1-4 of 4 results.