A386850 Least prime n < p <= (n-1)*(2n-1) such that Sum_{k=1..n} x^(n-k)/k! is irreducible modulo p, or 1 if such a prime p does not exist.
1, 3, 7, 7, 13, 41, 13, 31, 29, 31, 37, 23, 97, 331, 53, 101, 47, 89, 43, 199, 53, 43, 47, 107, 83, 61, 149, 37, 353, 127, 113, 199, 173, 107, 67, 401, 349, 101, 347, 47, 79, 89, 83, 241, 139, 641, 673, 103, 491, 179, 383, 293, 61, 439, 397, 547, 79, 1301, 379, 277
Offset: 1
Keywords
Examples
a(2) = 3 since 3 is the only prime in the interval (2, (2-1)*(2*2-1)] and x + 1/2 is irreducible modulo 3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..400
Programs
-
Mathematica
P[n_, x_]:=P[n, x]=Sum[x^(n-k)/k!, {k, 1, n}]; tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, PrimePi[n]+1, PrimePi[(n-1)(2n-1)]}];tab=Append[tab,1]; Label[aa]; Continue, {n, 1, 60}];Print[tab]
-
PARI
a(n) = forprime(p=n+1, (n-1)*(2*n-1), if (polisirreducible(Mod(sum(k=1, n, x^(n-k)/k!), p)), return(p))); 1; \\ Michel Marcus, Aug 05 2025
Comments