cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386878 Number of runs of 1's of length <= 3 over all binary strings of length n.

Original entry on oeis.org

0, 1, 3, 8, 19, 45, 104, 236, 528, 1168, 2560, 5568, 12032, 25856, 55296, 117760, 249856, 528384, 1114112, 2342912, 4915200, 10289152, 21495808, 44826624, 93323264, 193986560, 402653184, 834666496, 1728053248, 3573547008, 7381975040, 15233712128, 31406948352
Offset: 0

Views

Author

Félix Balado, Aug 06 2025

Keywords

Examples

			For n=3, the breakdown of the 8 runs of 1s is as follows: 001 (1), 010 (1), 011 (1), 100 (1), 101 (2), 110 (1) and 111 (1).
For n=4, the breakdown of the 19 runs of 1s is as follows: 0001 (1), 0010 (1), 0011 (1), 0100 (1), 0101 (2), 0110 (1), 0111 (1), 1000 (1), 1001 (2), 1010 (2), 1011 (2), 1100 (1), 1101 (2) and 1110 (1).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -4}, {0, 1, 3, 8, 19, 45}, 40] (* Paolo Xausa, Aug 19 2025 *)
  • Python
    def A386878(n): return (0,1,3,8,19)[n] if n<5 else 3+7*(n+1)<Chai Wah Wu, Aug 19 2025

Formula

For n>=4, a(n)=(3+7*(n+1))*2^(n-5); for n<4, a(n)=(n+1)*2^(n-2).
G.f.: x*(x^2+x+1)*(x-1)^2/(2*x-1)^2. - Alois P. Heinz, Aug 14 2025