A386894 Markoff numbers that are powers of one odd prime or twice powers of one odd prime.
1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229, 646018, 1686049, 2012674, 2922509, 3276509, 11485154, 21531778, 94418953, 253191266, 321534781, 433494437, 780291637, 1405695061, 1475706146, 2971215073, 6684339842, 19577194573
Offset: 1
Examples
26 = 2*13 is not a Markoff number, hence not in the present sequence. 610 = 2*5*61 is a Markoff number but not a prime power nor is 305 a prime power.
References
- Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.
Links
- Mong Lung Lang and Ser Peow Tan, A simple proof of the Markoff conjecture for prime powers, arXiv:math/0508443 [math.NT], 2005.
- Paul Schmutz, Systoles of arithmetic surfaces and the Markoff spectrum, Math. Ann. 305 (1996), no. 1, 191-203.
- Ying Zhang, An elementary proof of uniqueness of Markoff numbers which are prime powers, arXiv:math/0606283 [math.NT], 2007.
Programs
-
Mathematica
MAX=10^11; data=NestWhile[Select[Union[Sort/@Flatten[Table[{a, b, 3a b -c}/.MapThread[Rule, {{a, b, c}, #}]&/@Map[RotateLeft[ii, #]&, Range[3]], {ii, #}], 1]], Max[#]
James C. McMahon, Aug 12 2025 *) -
SageMath
def A386894List(len: int = 50, MAX: int = 10**10) -> list[int]: # Using function 'MarkovNumbers' from A002559. M = MarkovNumbers(len, MAX) U = set([1]) for m in M: # if m is a Markov number and ... z = ZZ(m) if is_prime_power(z) or (is_even(z) and is_prime_power(z//2)): U.add(m) return sorted(U) # Balance required sequence length and search depth. print(A386894List(len=120, MAX=10**12)) # Peter Luschny, Aug 12 2025
Formula
Markoff numbers of the form 2^j*p^k, with an odd prime p, j = 0 or 1, and k >= 0, ordered strictly increasing.
Comments