cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386284 Smallest k for which A386930(k) = n.

Original entry on oeis.org

1, 2, 4, 8, 18, 45, 36, 90, 72, 108, 144, 315, 216, 540, 576, 432, 648, 1350, 864, 2160, 1296, 1728, 4050, 2700, 2592, 3888, 6912, 11340, 5184, 5400, 7776, 10395, 10368, 13500, 20790, 10800, 23328, 24300, 16200, 31185, 31104, 21600, 27000, 40500, 62208, 56700
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a386930[n_] := DivisorSum[n, 1 &, PowerMod[-#, #, n] == Mod[-PowerMod[#, #, n], n] &];a[n_]:=Module[{k=0},Until[a386930[k]==n,k++];k];Array[a,46] (* James C. McMahon, Aug 21 2025 *)

A386310 Number of divisors d of n such that 2*d^d == 0 (mod n).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 3, 2, 2, 3, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 4, 2, 4, 1, 2, 1, 6, 1, 3, 1, 2, 1, 2, 1, 2, 2, 5, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 5, 1, 4, 2, 4
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 20 2025

Keywords

Crossrefs

Programs

  • Magma
    [1 + #[d: d in [1..n-1] | n mod d eq 0 and Modexp(d,d,n) eq -Modexp(d,d,n) mod n]: n in [1..100]];
    
  • Mathematica
    Table[Length[Select[Divisors[n], PowerMod[#, #, n] == Mod[n - PowerMod[#, #, n], n] &]], {n, 1, 100}] (* Vaclav Kotesovec, Aug 23 2025 *)
  • PARI
    a(n) = sumdiv(n, d, 2*Mod(d, n)^d == 0); \\ Michel Marcus, Aug 30 2025
Showing 1-2 of 2 results.