A385956 Intersection of A025487 and A002378.
2, 6, 12, 30, 72, 210, 240, 420, 1260, 6480, 50400, 147840, 510510, 4324320
Offset: 1
Examples
a(1) = 2 = 1*2 = 2^1. a(2) = 6 = 2*3 = 2^1 * 3^1. a(3) = 12 = 3*4 = 2^2 * 3^1. a(4) = 30 = 5*6 = 2^1 * 3^1 * 5^1. a(5) = 72 = 8*9 = 2^3 * 3^2. a(6) = 210 = 14*15 = 2^1 * 3^1 * 5^1 * 7^1.
Programs
-
Mathematica
Select[FactorialPower[Range[0, 3000], 2], (Max@Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* Amiram Eldar, Aug 10 2025 *)
-
Python
from sympy import prime, factorint def is_Hardy_Ramanujan(n): factors = factorint(n) p_idx = len(factors) if list(factors.keys())[-1] != prime(p_idx): return False expos = list(factors.values()) e = expos[0] for i in range(1, p_idx): if expos[i] > e: return False e = expos[i] return True print([ n*(n+1) for n in range(1, 10_000) if is_Hardy_Ramanujan(n*(n+1))])
Comments