cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387032 Numbers k with digits different from 0 and 1.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 222
Offset: 1

Views

Author

David A. Corneth, Aug 13 2025

Keywords

Comments

A062998 contains numbers like 123, 124, 125,.. which are not in this sequence. - R. J. Mathar, Aug 14 2025
A037344 contains numbers like 2047 and 4095 which are not in this sequence. - R. J. Mathar, Aug 14 2025

Examples

			2 is in the sequence since it does not contain 0 nor 1.
12 is not in the sequence since it has digit 1.
		

Crossrefs

Intersection of A052382 and A052383.

Programs

  • Maple
    isA387032 := proc(n)
        local d ;
        for d in convert(n,base,10) do
            if d <=1 then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A387032 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA387032(a) then
                    return a;
                end if;
            end do;
        end if;
    end proc:
    seq(A387032(n),n=1..200) ; # R. J. Mathar, Aug 14 2025
  • Mathematica
    Select[Range[222], Total@ DigitCount[#, 10, {0, 1}] == 0 &] (* Michael De Vlieger, Aug 13 2025 *)
  • PARI
    is(n) = if(n <= 0, return(0)); Set(digits(n))[1] >= 2
    
  • Python
    def ok(n): return {"0","1"} & set(str(n)) == set()
    print([k for k in range(223) if ok(k)]) # Michael S. Branicky, Aug 13 2025
    
  • Python
    def A387032(n):
        m = ((k:=7*n+1).bit_length()-1)//3
        return sum((2+((k-(1<<3*m))//(7<<3*j)&7))*10**j for j in range(m)) # Chai Wah Wu, Aug 13 2025