cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387041 G.f. A(x) satisfies (A(x) - x^2) o (x - A(x)^2) = x, where operator 'o' denotes composition.

Original entry on oeis.org

1, 2, 6, 41, 348, 3360, 35632, 406104, 4904914, 62180918, 821752456, 11263836924, 159523476148, 2327336091732, 34894961587312, 536671299862721, 8453184479505430, 136188177741639378, 2241801065131393700, 37670062720274627960, 645649822816127973456, 11279877783091509190416
Offset: 1

Views

Author

Paul D. Hanna, Aug 14 2025

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 6*x^3 + 41*x^4 + 348*x^5 + 3360*x^6 + 35632*x^7 + 406104*x^8 + 4904914*x^9 + 62180918*x^10 + ...
where A(x) - x^2 = x + A(A(x) - x^2)^2;
also, A(x - A(x)^2) = x + (x - A(x)^2)^2 = x + x^2 - 2*x*A(x)^2 + A(x)^4.
RELATED SERIES.
A(A(x) - x^2) = x + 3*x^2 + 16*x^3 + 126*x^4 + 1174*x^5 + 12278*x^6 + 139496*x^7 + 1689597*x^8 + 21553566*x^9 + 287191110*x^10 + ...
A(x - A(x)^2) = x + x^2 - 2*x^3 - 7*x^4 - 24*x^5 - 164*x^6 - 1452*x^7 - 14312*x^8 - 153354*x^9 - 1757322*x^10 - ...
A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 106*x^5 + 896*x^6 + 8604*x^7 + 90561*x^8 + 1023592*x^9 + 12258452*x^10 + ...
A(x)^4 = x^4 + 8*x^5 + 48*x^6 + 340*x^7 + 2896*x^8 + 27768*x^9 + 289862*x^10 + ...
		

Programs

  • PARI
    {a(n) = my(V=[0,1]); for(i=1,n, V = concat(V,0); A = Ser(V);
    V[#V] = polcoef(x + (x - A^2)^2 - subst(A,x, x - A^2),#V-1)); polcoef(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = x + x^2 + A(A(x) - x^2)^2.
(2) A(x - A(x)^2) = x + (x - A(x)^2)^2.
(3) A(A(x) - x^2) = sqrt( A(x) - x^2 - x ).
(4) A(x)^2 = x - sqrt( A(x - A(x)^2) - x ).
(5) A(x) = x^2 + Series_Reversion(x - A(x)^2).
(6) A(x) = sqrt( x - Series_Reversion(A(x) - x^2) ).
(7) A(x) = x + x^2 + Sum_{n>=0} d^n/dx^n A(x)^(2*n+2) / (n+1)!.
(8) A(x) = x^2 + x*exp( Sum_{n>=0} d^n/dx^n (A(x)^(2*n+2)/x) / (n+1)! ).