cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387057 Numbers k that are infinitarily divisible by the number of infinitary divisors of k.

Original entry on oeis.org

1, 2, 8, 12, 20, 24, 28, 36, 40, 44, 52, 56, 64, 68, 72, 76, 88, 92, 100, 104, 116, 124, 128, 136, 148, 152, 164, 172, 184, 188, 196, 200, 212, 232, 236, 244, 248, 268, 284, 292, 296, 316, 324, 328, 332, 344, 356, 376, 384, 388, 392, 404, 412, 424, 428, 436, 452
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2025

Keywords

Comments

Numbers k such that A037445(k) is an infinitary divisor of k.
This sequence is infinite. For example, if p is an odd prime, then 8*p is a term.

Crossrefs

Subsequence of A387056.

Programs

  • Mathematica
    infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (fct = FactorInteger[d])], (e = Last /@ fct)] == e;
    f[p_, e_] := 2^DigitCount[e, 2, 1]; id[1] = 1; id[n_] := Times @@ f @@@ FactorInteger[n]; q[k_] := Module[{d = id[k]}, Divisible[k, d] && infDivQ[k, d]]; Select[Range[500], q]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } \\ Michel Marcus at A077609
    isok(k) = {my(f = factor(k), id = vecprod(apply(x -> 2^hammingweight(x), f[, 2]))); !(k % id) && isidiv(id, f);}