A387057 Numbers k that are infinitarily divisible by the number of infinitary divisors of k.
1, 2, 8, 12, 20, 24, 28, 36, 40, 44, 52, 56, 64, 68, 72, 76, 88, 92, 100, 104, 116, 124, 128, 136, 148, 152, 164, 172, 184, 188, 196, 200, 212, 232, 236, 244, 248, 268, 284, 292, 296, 316, 324, 328, 332, 344, 356, 376, 384, 388, 392, 404, 412, 424, 428, 436, 452
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (fct = FactorInteger[d])], (e = Last /@ fct)] == e; f[p_, e_] := 2^DigitCount[e, 2, 1]; id[1] = 1; id[n_] := Times @@ f @@@ FactorInteger[n]; q[k_] := Module[{d = id[k]}, Divisible[k, d] && infDivQ[k, d]]; Select[Range[500], q]
-
PARI
isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } \\ Michel Marcus at A077609 isok(k) = {my(f = factor(k), id = vecprod(apply(x -> 2^hammingweight(x), f[, 2]))); !(k % id) && isidiv(id, f);}
Comments