cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385719 Expansion of B(x)/sqrt(1 + 2*(B(x)-1)/3), where B(x) is the g.f. of A004355.

Original entry on oeis.org

1, 4, 38, 428, 5204, 66104, 863840, 11515308, 155779966, 2131436392, 29426804398, 409254436452, 5726378247412, 80535621269208, 1137609359823936, 16130112288879248, 229462608491483364, 3273749607191060480, 46826932120849617128, 671341041479214814160, 9644654058165119642624
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 2*(Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] - 1)/3], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)

Formula

Sum_{k=0..n} a(k) * a(n-k) = A385497(n).
G.f.: 1/sqrt(1 - 4*x*g^4*(3-g)) where g = 1+x*g^6 is the g.f. of A002295.
G.f.: g/sqrt((2-g) * (6-5*g)) where g = 1+x*g^6 is the g.f. of A002295.
a(n) ~ 2^(6*n - 1/2) * 3^(6*n + 3/4) / (Gamma(1/4) * n^(3/4) * 5^(5*n + 1/4)) * (1 + 7*Gamma(1/4)^2/(48*Pi*sqrt(30*n))). - Vaclav Kotesovec, Aug 20 2025

A387084 Expansion of B(x)/sqrt(1 + 4*(B(x)-1)/5), where B(x) is the g.f. of A001449.

Original entry on oeis.org

1, 3, 23, 211, 2095, 21752, 232439, 2534182, 28041295, 313833025, 3544160216, 40318629754, 461455158383, 5308453068900, 61333295856750, 711305543582150, 8276351877367663, 96576953297406377, 1129842469637643485, 13248082583624602575, 155660344852055352760
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Sum[Binomial[5*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 4*(Sum[Binomial[5*n, n]*x^n, {n, 0, nmax}] - 1)/5], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)

Formula

Sum_{k=0..n} a(k) * a(n-k) = A079589(n).
G.f.: 1/sqrt(1 - x*g^3*(5+g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: g/sqrt(5-4*g) where g = 1+x*g^5 is the g.f. of A002294.
Conjecture D-finite with recurrence 3902464*n*(8*n-5) *(8*n-3)*(8*n-1) *(8*n+1)*a(n) +80*(-12565760000*n^5 +68448000000*n^4 -163457516000*n^3 +200475354000*n^2 -122843089511*n +29804717943)*a(n-1) +125000*(134055000*n^5 -1109795000*n^4 +3726971625*n^3 -6307124125*n^2 +5325821766*n -1769460798)*a(n-2) +48828125*(-1556875*n^5 +15845625*n^4 -60659875*n^3 +103818375*n^2 -67764178*n +1391424)*a(n-3) -152587890625 *(5*n-16)*(n-3) *(5*n-19)*(5*n-18) *(5*n-17)*a(n-4)=0. - R. J. Mathar, Aug 19 2025
a(n) ~ 5^(5*n + 3/4) / (Gamma(1/4) * n^(3/4) * 2^(8*n + 7/4)). - Vaclav Kotesovec, Aug 20 2025
Showing 1-2 of 2 results.