A387099 Numbers that can be written in exactly five ways as s_1^x_1 + ... + s_t^x_t, with 1 < s_1 < ... < s_t and {s_1,..., s_t} = {x_1,..., x_t} for some t > 0.
5260225, 7923882, 11054875, 11224211, 11870046, 15466174, 16859617, 16911017, 17276523, 17326946, 18664520, 18668302, 18908170, 19375153, 19706896, 19854394, 20050965, 20757873, 21468249, 24723272, 26689657, 26925803, 26974782, 27214122, 27336893, 28055974
Offset: 1
Examples
5260225 = 2^22 + 3^8 + 4^5 + 5^2 + 7^7 + 8^3 + 22^4 = 2^21 + 3^8 + 4^10 + 7^3 + 8^7 + 10^4 + 21^2 = 2^7 + 3^14 + 4^5 + 5^8 + 6^6 + 7^3 + 8^2 + 14^4 = 2^15 + 3^10 + 4^9 + 5^5 + 6^4 + 7^6 + 9^7 + 10^3 + 15^2 = 2^11 + 3^7 + 4^10 + 5^9 + 6^8 + 7^3 + 8^5 + 9^6 + 10^4 + 11^2. 7923882 = 2^8 + 3^5 + 4^11 + 5^9 + 6^3 + 8^4 + 9^2 + 11^6 = 2^12 + 3^9 + 4^5 + 5^6 + 6^2 + 7^8 + 8^7 + 9^3 + 12^4 = 2^14 + 3^13 + 4^4 + 5^5 + 6^7 + 7^8 + 8^6 + 13^2 + 14^3 = 2^18 + 3^14 + 4^6 + 5^9 + 6^3 + 7^7 + 9^5 + 14^4 + 18^2 = 2^19 + 3^14 + 4^8 + 5^9 + 6^6 + 8^2 + 9^4 + 14^5 + 19^3. 11054875 = 2^3 + 3^6 + 4^10 + 5^5 + 6^2 + 7^4 + 10^7 = 2^15 + 3^8 + 4^6 + 5^2 + 6^9 + 7^7 + 8^3 + 9^5 + 15^4 = 2^22 + 3^12 + 4^2 + 5^6 + 6^7 + 7^8 + 8^5 + 12^3 + 22^4 = 2^9 + 3^13 + 4^10 + 5^3 + 6^5 + 7^8 + 8^7 + 9^6 + 10^4 + 13^2 = 2^11 + 3^12 + 4^8 + 5^7 + 6^9 + 7^6 + 8^3 + 9^2 + 11^5 + 12^4.
Links
- David A. Corneth, Table of n, a(n) for n = 1..152