cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387162 Numbers k satisfying Euler's criterion for odd perfect numbers (A228058), such that sigma(k)+k is also a multiple of 3, and sigma(k) preserves the 3-adic valuation of k, where sigma is the sum of divisors function.

Original entry on oeis.org

153, 325, 801, 925, 1525, 1573, 1773, 1825, 2097, 2205, 2425, 2725, 3757, 3825, 3925, 4041, 4477, 4525, 4689, 4825, 5013, 5725, 6025, 6877, 6925, 6957, 7381, 7605, 7825, 7929, 8125, 8425, 8577, 8725, 8833, 9325, 9549, 9873, 9925, 10225, 10525, 10693, 10825, 10933, 11425, 11493, 11737, 12789, 13189, 13437, 13525
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2025

Keywords

Crossrefs

Intersection of A228058 and A349752.
Subsequence of A349755 from which this differs for the first time at n=109, with a(109) = 31225, while A349755(109) = 31213.
Probably the intersection of A349755 and A386429.

Programs

  • Mathematica
    nn=275;n=1;a228058={};While[Length[a228058 ] < nn,n=n+2;{p,e}=Transpose[FactorInteger[n]];od=Select[e,OddQ];If[Length[e]>1&&Length[od]==1&&Mod[od[[1]], 4]==1&&Mod[p[[Position[e, od[[1]]][[1,1]]]],4]==1,AppendTo[a228058,n]]];lim=a228058[[-1]];a349752=Select[Range[1,lim,2],Divisible[(s=DivisorSigma[1,#])+#,3] && IntegerExponent[s,3]==IntegerExponent[#,3]&];Intersection[a228058,a349752] (* James C. McMahon, Aug 27 2025 *)
  • PARI
    isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
    isA349752(n) = if(!(n%2), 0, my(s=sigma(n)); (0==(s+n)%3) && valuation(s, 3)==valuation(n, 3));
    isA387162(n) = (isA349752(n) && isA228058(n));