A387162 Numbers k satisfying Euler's criterion for odd perfect numbers (A228058), such that sigma(k)+k is also a multiple of 3, and sigma(k) preserves the 3-adic valuation of k, where sigma is the sum of divisors function.
153, 325, 801, 925, 1525, 1573, 1773, 1825, 2097, 2205, 2425, 2725, 3757, 3825, 3925, 4041, 4477, 4525, 4689, 4825, 5013, 5725, 6025, 6877, 6925, 6957, 7381, 7605, 7825, 7929, 8125, 8425, 8577, 8725, 8833, 9325, 9549, 9873, 9925, 10225, 10525, 10693, 10825, 10933, 11425, 11493, 11737, 12789, 13189, 13437, 13525
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
nn=275;n=1;a228058={};While[Length[a228058 ] < nn,n=n+2;{p,e}=Transpose[FactorInteger[n]];od=Select[e,OddQ];If[Length[e]>1&&Length[od]==1&&Mod[od[[1]], 4]==1&&Mod[p[[Position[e, od[[1]]][[1,1]]]],4]==1,AppendTo[a228058,n]]];lim=a228058[[-1]];a349752=Select[Range[1,lim,2],Divisible[(s=DivisorSigma[1,#])+#,3] && IntegerExponent[s,3]==IntegerExponent[#,3]&];Intersection[a228058,a349752] (* James C. McMahon, Aug 27 2025 *)
-
PARI
isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y)); isA349752(n) = if(!(n%2), 0, my(s=sigma(n)); (0==(s+n)%3) && valuation(s, 3)==valuation(n, 3)); isA387162(n) = (isA349752(n) && isA228058(n));