cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387166 Numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) > 1, and that satisfy Euler's condition for odd perfect numbers (A228058).

Original entry on oeis.org

14157, 33525, 101025, 118825, 129605, 281025, 300713, 301725, 335405, 348525, 358925, 438525, 573525, 618525, 686025, 688205, 696725, 742577, 776025, 838125, 909225, 911025, 978525, 1046025, 1079225, 1099805, 1226025, 1293525, 1316025, 1322893, 1428889, 1451025, 1529045, 1563525, 1698525, 1721025, 1788525, 1991025, 2036025
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2025

Keywords

Crossrefs

Intersection of A228058 and A349176.
Intersection of A387164 and A104210, or equally, intersection of A387164 and A349166.
Setwise difference A387164 \ A387167.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
    isA349176(n) = if(!(n%2),0,my(u=A003961(n),t=gcd(u,n)); (t>1)&&(gcd(u,sigma(n))==t));
    isA387166(n) = (isA228058(n) && isA349176(n));