cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387202 a(n) is the number of dissections of a (4*n+2)-gon into hexagons using strictly disjoint diagonals.

Original entry on oeis.org

1, 5, 21, 87, 363, 1534, 6570, 28492, 124944, 553301, 2471373, 11122275, 50389695, 229643895, 1052093655, 4842863465, 22386911925, 103885321615, 483759492255, 2259888333445, 10587902977185, 49738841822400, 234235771140876, 1105609645231322, 5229610939919718
Offset: 1

Views

Author

Muhammed Sefa Saydam, Aug 21 2025

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={my(g=(1 - 3*x - sqrt(1 - 6*x + 5*x^2 + O(x*x^n)))/(2*x)); Vec((1 + 4*g + 3*g^2)*x + g^2)} \\ Andrew Howroyd, Aug 21 2025

Formula

G.f.: x*(1 + 4*B(x) + 3*B(x)^2) + B(x)^2, where 1 + B(x) is the g.f. of A002212. - Andrew Howroyd, Aug 21 2025
D-finite with recurrence -(n+2)*(2*n-3)*a(n) +3*(2*n+1)*(2*n-3)*a(n-1) -5*(2*n+1)*(n-3)*a(n-2)=0. - R. J. Mathar, Aug 28 2025