A387118
Number of integer partitions of n without choosable initial intervals.
Original entry on oeis.org
0, 0, 1, 1, 2, 4, 6, 8, 13, 19, 28, 37, 52, 70, 97, 130, 172, 224, 293, 378, 492, 630, 806, 1018, 1286, 1609, 2019, 2514, 3131, 3874, 4784
Offset: 0
The partition y = (2,2,1) has initial intervals ({1,2},{1,2},{1}), which are not choosable, so y is counted under a(5).
The a(2) = 1 through a(8) = 13 partitions:
(11) (111) (211) (221) (222) (511) (611)
(1111) (311) (411) (2221) (2222)
(2111) (2211) (3211) (3221)
(11111) (3111) (4111) (3311)
(21111) (22111) (4211)
(111111) (31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
For divisors instead of initial intervals we have
A370320, ranks
A355740.
For prime factors instead of initial intervals we have
A370593, ranks
A355529.
These partitions have ranks
A387113.
For partitions instead of initial intervals we have
A387134.
The complement for partitions is
A387328.
For strict partitions instead of initial intervals we have
A387137, ranks
A387176.
The complement for strict partitions is
A387178.
-
Table[Length[Select[IntegerPartitions[n],Select[Tuples[Range/@#],UnsameQ@@#&]=={}&]],{n,0,10}]
A387137
Number of integer partitions of n whose parts do not have choosable sets of strict integer partitions.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 6, 9, 14, 20, 29, 39, 56, 74, 101, 134, 178, 232, 305, 392, 508, 646, 825, 1042, 1317, 1649, 2066, 2567, 3190, 3937, 4859, 5960, 7306, 8914, 10863, 13183, 15984, 19304, 23288, 28003, 33631, 40272, 48166, 57453, 68448, 81352, 96568, 114383
Offset: 0
The a(2) = 1 through a(8) = 14 partitions:
(11) (111) (22) (221) (222) (322) (422)
(211) (311) (411) (511) (611)
(1111) (2111) (2211) (2221) (2222)
(11111) (3111) (3211) (3221)
(21111) (4111) (3311)
(111111) (22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
Twice-partitions of this type (into distinct strict partitions) are counted by
A358914.
For divisors instead of strict partitions we have
A370320, ranks
A355740.
For prime factors instead of strict partitions we have
A370593, ranks
A355529.
For initial intervals instead of strict partitions we have
A387118, ranks
A387113.
For all partitions instead of strict partitions we have
A387134, ranks
A387577.
These partitions are ranked by
A387176.
Cf.
A005703,
A052335,
A261049,
A270995,
A276078,
A335448,
A355535,
A367867,
A367901,
A367905,
A383706,
A387115.
-
strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[strptns/@#],UnsameQ@@#&]]==0&]],{n,0,15}]
A387134
Number of integer partitions of n whose parts do not have choosable sets of integer partitions.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 6, 8, 12, 17, 25, 34, 49, 65, 89, 118, 158, 206, 271, 349, 453, 578, 740, 935, 1186, 1486, 1865, 2322, 2890, 3572, 4415, 5423, 6659, 8134, 9927, 12062, 14643, 17706, 21387, 25746, 30957, 37109, 44433, 53054, 63273, 75276, 89444, 106044
Offset: 0
The a(2) = 1 through a(8) = 12 partitions:
(11) (111) (211) (311) (222) (511) (611)
(1111) (2111) (411) (2221) (2222)
(11111) (2211) (3211) (3311)
(3111) (4111) (4211)
(21111) (22111) (5111)
(111111) (31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
These partitions are ranked by
A276079.
For divisors instead of partitions we have
A370320, complement
A239312.
For prime factors instead of partitions we have
A370593, ranks
A355529.
For initial intervals instead of partitions we have
A387118, complement
A238873.
For just choices of strict partitions we have
A387137.
-
Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[IntegerPartitions/@#],UnsameQ@@#&]]==0&]],{n,0,15}]
A387178
Number of integer partitions of n whose parts have choosable sets of strict integer partitions.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 6, 8, 10, 13, 17, 21, 27, 34, 42, 53, 65, 80, 98, 119, 146, 177, 213, 258, 309, 370, 443, 528, 628, 745, 882, 1043, 1229, 1447, 1700, 1993, 2333, 2727, 3182, 3707, 4311, 5008, 5808, 6727, 7782, 8990, 10371, 11952, 13756, 15815, 18161
Offset: 0
The partition y = (3,3,2) has sets of strict integer partitions ({(2,1),(3)},{(2,1),(3)},{(2)}), and we have the choice ((2,1),(3),(2)) or ((3),(2,1),(2)), so y is counted under a(8).
The a(1) = 1 through a(9) = 10 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (3,1) (3,2) (3,3) (4,3) (4,4) (5,4)
(4,1) (4,2) (5,2) (5,3) (6,3)
(5,1) (6,1) (6,2) (7,2)
(3,2,1) (3,3,1) (7,1) (8,1)
(4,2,1) (3,3,2) (4,3,2)
(4,3,1) (4,4,1)
(5,2,1) (5,3,1)
(6,2,1)
(3,3,2,1)
For initial intervals instead of strict partitions we have
A238873, ranks
A387112.
For divisors instead of strict partitions we have
A239312, ranks
A368110.
For prime factors instead of strict partitions we have
A370592, ranks
A368100.
These partitions are ranked by
A387177.
For all partitions instead of just strict partitions we have
A387328, ranks
A387576.
For constant partitions instead of strict partitions we have
A387330, ranks
A387181.
A358914 counts twice-partitions into distinct strict partitions.
-
strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Select[IntegerPartitions[n],Select[Tuples[strptns/@#],UnsameQ@@#&]!={}&]],{n,0,15}]
Showing 1-4 of 4 results.
Comments