A387118 Number of integer partitions of n without choosable initial intervals.
0, 0, 1, 1, 2, 4, 6, 8, 13, 19, 28, 37, 52, 70, 97, 130, 172, 224, 293, 378, 492, 630, 806, 1018, 1286, 1609, 2019, 2514, 3131, 3874, 4784, 5872, 7198, 8786, 10712, 13013, 15794, 19100, 23063, 27752, 33341, 39939, 47781, 57013, 67955, 80816, 95992, 113773, 134668
Offset: 0
Examples
The partition y = (2,2,1) has initial intervals ({1,2},{1,2},{1}), which are not choosable, so y is counted under a(5). The a(2) = 1 through a(8) = 13 partitions: (11) (111) (211) (221) (222) (511) (611) (1111) (311) (411) (2221) (2222) (2111) (2211) (3211) (3221) (11111) (3111) (4111) (3311) (21111) (22111) (4211) (111111) (31111) (5111) (211111) (22211) (1111111) (32111) (41111) (221111) (311111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Select[Tuples[Range/@#],UnsameQ@@#&]=={}&]],{n,0,10}]
Extensions
More terms from Jinyuan Wang, Sep 05 2025
Comments