A387393 Decimal expansion of the imaginary part of the smallest complex solution to zeta(z) = zeta(1-z).
3, 4, 3, 6, 2, 1, 8, 2, 2, 6, 0, 8, 6, 9, 6, 1, 5, 9, 1, 6, 5, 5, 9, 6, 5, 4, 2, 5, 6, 5, 6, 4, 7, 2, 8, 8, 8, 0, 8, 8, 5, 7, 8, 0, 8, 2, 9, 7, 5, 2, 0, 5, 3, 2, 6, 5, 3, 4, 1, 3, 9, 4, 3, 8, 8, 8, 0, 3, 4, 2, 8, 6, 2, 3, 1, 8, 7, 3, 4, 0, 8, 6, 8, 7, 4, 6, 3, 1, 1, 7, 6, 6, 0, 3, 9, 4, 3, 7, 2, 8, 8, 4, 3, 6, 6, 5, 1, 7, 2, 2, 6, 1, 3, 5, 4, 0, 2, 0, 7, 0
Offset: 1
Examples
0.5 + i*3.43621822608696159...
Links
- Wikipedia, Gram points
Programs
-
Mathematica
RealDigits[Im[x /. FindRoot[Zeta[x] == Zeta[1 - x], {x, 0.5+3.5I}, WorkingPrecision -> 20]]][[1]]
Formula
zeta(0.5+i*3.436218226086961...) = zeta(0.5-i*3.436218226086961...) = 0.564150979455795...
Smallest complex root > 0.5 of the equation Gamma(z) = (2^(z-1))*(Pi^z)*sec((Pi*z)/2).
Smallest positive zero of sin(theta(t)) where theta is Riemann-Siegel theta function.
Smallest positive root of (-0.5i)*(loggamma(.25+(i*z)*.5)-loggamma(.25-(i*z)*.5)) - (z*log(Pi))*.5 = -Pi.
Comments