A387404 Numbers of the form 12*k + 1 that satisfy Euler's condition for odd perfect numbers (A228058).
325, 637, 925, 1525, 1573, 1813, 1825, 2425, 2725, 2989, 3577, 3757, 3925, 4477, 4525, 4693, 4753, 4825, 5341, 5725, 6025, 6253, 6877, 6925, 7381, 7693, 7825, 8125, 8425, 8725, 8833, 8869, 9325, 9457, 9925, 10225, 10309, 10525, 10693, 10825, 10933, 11221, 11425, 11737, 11809, 12337, 12493, 13189, 13357, 13525, 13573
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 51; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1, 1]]]], 4] == 1&&Mod[n,12]==1, AppendTo[t, n]]]; t (* James C. McMahon, Aug 29 2025 *)
-
PARI
is_A387404(n) = if(1!=(n%12) || (omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));