cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387404 Numbers of the form 12*k + 1 that satisfy Euler's condition for odd perfect numbers (A228058).

Original entry on oeis.org

325, 637, 925, 1525, 1573, 1813, 1825, 2425, 2725, 2989, 3577, 3757, 3925, 4477, 4525, 4693, 4753, 4825, 5341, 5725, 6025, 6253, 6877, 6925, 7381, 7693, 7825, 8125, 8425, 8725, 8833, 8869, 9325, 9457, 9925, 10225, 10309, 10525, 10693, 10825, 10933, 11221, 11425, 11737, 11809, 12337, 12493, 13189, 13357, 13525, 13573
Offset: 1

Views

Author

Antti Karttunen, Aug 29 2025

Keywords

Crossrefs

Intersection of A017533 and A228058.

Programs

  • Mathematica
    nn = 51; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1, 1]]]], 4] == 1&&Mod[n,12]==1, AppendTo[t, n]]]; t (* James C. McMahon, Aug 29 2025 *)
  • PARI
    is_A387404(n) = if(1!=(n%12) || (omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));