A387406 Numbers k such that sigma(A253560(k)) / A253560(k) is equal to (sigma(k)+1) / k, where A253560(k) = k multiplied by its largest prime factor.
6, 18, 28, 54, 117, 162, 196, 486, 496, 775, 1372, 1458, 1521, 4374, 8128, 9604, 13122, 15376, 19773, 24025, 39366, 67228, 88723, 118098, 257049, 354294, 470596, 476656, 744775, 796797, 1032256, 1062882, 2896363, 3188646, 3294172, 3341637, 6725201, 9565938, 12326221, 14776336, 23059204, 23088025, 25774633, 27237961
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..58 (larger b-file needed)
- C. A. Holdener and J. A. Holdener, Characterizing Quasi-Friendly Divisors, Journal of Integer Sequences, Vol. 23 (2020), Article 20.8.4.
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
Mathematica
fk[k_]:=k*FactorInteger[k][[-1,1]];Select[Range[10^6],DivisorSigma[1,fk[#]]/fk[#]==(DivisorSigma[1,#]+1)/#&] (* James C. McMahon, Aug 31 2025 *)
-
PARI
A253560(n) = if (n==1, 1, n*vecmax(factor(n)[, 1])); isA387406(n) = { my(x=A253560(n)); ((sigma(x)/x) == ((sigma(n)+1)/n)); };
Comments