cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A000432 Series-parallel numbers.

Original entry on oeis.org

8, 52, 288, 1424, 6648, 29700, 128800, 545600, 2269672, 9303140, 37672216, 150998016, 599988696, 2366216164, 9270987656, 36116062832, 139978757920, 540069059028, 2075217121688, 7944690769952, 30313624200640, 115312027433188, 437420730644304, 1655047867097280, 6247339311097296, 23530440547115428, 88447214709073696, 331832490378209152, 1242766581420901656, 4646714574562484628, 17347357264162110368, 64668460220964604944, 240747014238189337840, 895102104022837748484, 3323982608759454833032, 12329573838525875316560, 45684294664598118867184, 169098457957523787786644
Offset: 3

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    n = 38; s = 1/(1 - x) + O[x]^(n + 1); Do[s = s/(1 - x^k)^Coefficient[s, x^k] + O[x]^(n + 1), {k, 2, n}] ; S = s - 1; CoefficientList[4 (2 + S) (1 + S)/(1 - S)^5 + O[x]^n, x] (* Jean-François Alcover, Feb 09 2016 *)

Formula

G.f.: 4(2+S)(1+S)/(1-S)^5, where S = g.f. for A000084. - Sean A. Irvine, Nov 14 2010

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A000527 Series-parallel numbers.

Original entry on oeis.org

52, 472, 3224, 18888, 101340, 511120, 2465904, 11496144, 52165892, 231557064, 1009247192, 4331502840, 18346242492, 76822836544, 318485778848, 1308750158016, 5335993098340, 21603437175288, 86912657626392, 347660876627944, 1383457374046444, 5479086968052912, 21604984733546336, 84850331177724944, 332001521469767940, 1294589169323791912, 5031934808360234760, 19500424806065865400, 75360646947991208396, 290478417300879735680, 1116919455364101145920, 4284817000807140094464, 16402243457215852326116, 62659647762404302956856, 238910441445219175239480
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    n = 35; s = 1/(1 - x) + O[x]^(n + 1); Do[s = s/(1 - x^k)^Coefficient[s, x^k] + O[x]^(n + 1), {k, 2, n}] ; S = s - 1; CoefficientList[4 (13 + 14 S + 3 S^2) (1 + S)/(1 - S)^7 + O[x]^n, x] (* Jean-François Alcover, Feb 09 2016 *)

Formula

G.f.: 4(13+14S+3S^2)(1+S)/(1-S)^7, where S = g.f. for A000084. - Sean A. Irvine, Nov 14 2010

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A232005 Number of distinct resistances that can be produced from a circuit of resistors with resistances 1, 2, ..., n using only series and parallel combinations.

Original entry on oeis.org

1, 2, 8, 48, 386, 3781, 49475, 762869, 13554897, 266817541
Offset: 1

Views

Author

Dave R.M. Langers, Nov 16 2013

Keywords

Comments

Found by exhaustive search: all configurations of resistors were enumerated, resistances calculated, sorted, and distinct values counted.
This sequence allows any circuits to be combined in series or in parallel (akin A000084); A051045 requires circuits to be combined with a single resistor at a time.
This sequence regards circuits as distinct only if their resistance is different; A006351 regards circuits distinct if their configuration is different, although some may have the same resistance.
This sequence considers resistors with contiguous resistances 1, 2, ..., n; A005840 considers arbitrarily different resistors, while A048211 considers n equal resistances.

Examples

			a(2) = 2 since given a 1-ohm and a 2-ohm resistor, a series circuit yields 3 ohms, while a parallel circuit yields 2/3 ohms, which thus yields two distinct resistances.
		

Crossrefs

A292126 Number of two-terminal exclusive-bridged graphs with n edges.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 21, 86, 349, 1328, 4925, 17786
Offset: 1

Views

Author

Eric M. Schmidt, Sep 09 2017

Keywords

Comments

1

Crossrefs

Previous Showing 41-44 of 44 results.