cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A056881 Number of n-celled diagonally symmetric polyominoes without holes.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 6, 5, 21, 18, 70, 61, 239, 206, 828, 711, 2903, 2485, 10314, 8791, 37031, 31451, 134147, 113566, 489672, 413419, 1799084, 1515282, 6647009, 5586834, 24677902, 20703840, 92009606, 77067674, 344336294, 288001040, 1292929699, 1079999410, 4869184237, 4062534430
Offset: 1

Views

Author

N. J. A. Sloane, Sep 03 2000

Keywords

Crossrefs

Cf. A000104, A006748 (with holes allowed).

Extensions

a(29)-a(40) from John Mason, Oct 11 2022

A056882 Number of n-celled polyominoes without holes, symmetric about diagonal 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1, 2, 3, 4, 4, 6, 7, 12, 12, 17, 18, 33, 34, 51, 52, 93, 100, 154, 152, 276, 300, 474, 460, 846, 929, 1491, 1431, 2667, 2956
Offset: 1

Views

Author

N. J. A. Sloane, Sep 03 2000

Keywords

Crossrefs

Cf. A000104, A056878 (with holes allowed).

Extensions

a(29)-a(40) from John Mason, Oct 10 2022

A056883 Number of n-celled rotationally symmetric polyominoes without holes.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 4, 18, 19, 72, 72, 268, 276, 1002, 1043, 3733, 3926, 14000, 14810, 52658, 55987, 199020, 212364, 754826, 807861, 2872926, 3082202, 10966333, 11789248, 41970489, 45198317, 160996986, 173640109, 618839771, 668316169, 2383000591, 2576516523, 9191269314, 9947949563, 35502661446
Offset: 1

Views

Author

N. J. A. Sloane, Sep 03 2000

Keywords

Comments

In other words, free unholey polyominoes with 180-degree rotational symmetry and no other. - John Mason, Oct 11 2022

Crossrefs

Cf. A000104, A006747 (with holes allowed).

Extensions

a(29)-a(40) from John Mason, Oct 11 2022

A259087 Number of n-celled polyominoes which are of rectangular but not square type.

Original entry on oeis.org

0, 1, 1, 4, 6, 28, 83, 289, 1030, 3860, 14154, 53222, 202001, 771255, 2945803, 11304541, 43564276, 168413249, 652292925, 2531493604, 9845752518, 38372748112
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2015

Keywords

Crossrefs

Formula

a(n)+A259088(n) = A000105(n).

Extensions

a(15)-a(17) computed from A000105-A259088 by Jean-François Alcover, Dec 30 2019
a(18)-a(22) from John Mason, Nov 19 2021

A259090 Number of symmetrical n-celled polyominoes.

Original entry on oeis.org

1, 1, 2, 4, 7, 15, 24, 53, 89, 194, 323, 722, 1197, 2706, 4465, 10229, 16814, 38900, 63721, 148808, 243006, 571937, 931305, 2207561, 3584959, 8551309, 13851410, 33229843, 53694326, 129485500, 208738348, 505796115, 813532119, 1980023840, 3177764415
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2015

Keywords

Crossrefs

Programs

Formula

a(n) = A000105(n) - A006749(n).

Extensions

a(5)-a(6) corrected and a(15)-a(28) from Andrew Howroyd, Dec 04 2018
a(29) and beyond from John Mason, Dec 22 2021

A308300 T(n,k) is the number of simply connected square animals with n cells and k internal vertices (0 <= k <= A083479(n)), triangle read by rows.

Original entry on oeis.org

1, 1, 2, 4, 1, 11, 1, 27, 7, 1, 82, 21, 4, 250, 90, 21, 2, 815, 334, 89, 9, 1, 2685, 1311, 391, 67, 6, 9072, 4978, 1674, 324, 45, 1, 30889, 19030, 7089, 1630, 275, 23, 1, 106290, 72082, 29433, 7629, 1498, 174, 11
Offset: 1

Views

Author

R. J. Mathar, May 19 2019

Keywords

Examples

			The table starts:
       1;
       1;
       2;
       4,     1;
      11,     1;
      27,     7,     1;
      82,    21,     4;
     250,    90,    21,    2;
     815,   334,    89,    9,    1;
    2685,  1311,   391,   67,    6;
    9072,  4978,  1674,  324,   45,   1;
   30889, 19030,  7089, 1630,  275,  23,  1;
  106290, 72082, 29433, 7629, 1498, 174, 11;
  ...
		

Crossrefs

Cf. A000104 (row sums), A350030 (first column of this sequence).

A359520 Number of free holey polyominoes of n cells with simply-connected interiors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 5, 35, 179, 909, 4285, 19702, 88040, 386826, 1674852, 7174436, 30462009
Offset: 1

Views

Author

John Mason, Jan 04 2023

Keywords

Examples

			a(7) = 1 because of the holey heptomino.
		

Crossrefs

Formula

a(n) = A342537(n) - A000104(n) (simply connected polyominoes minus unholey polyominoes).

A056879 Number of n-celled axially symmetric polyominoes without holes.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 9, 23, 37, 87, 138, 313, 510, 1130, 1859, 4070, 6786, 14750, 24811, 53715, 91096, 196769, 335815, 724470, 1243175, 2680212, 4619999, 9957652, 17231447, 37137177, 64480255, 138978282, 242011375, 521706359, 910817416, 1963885190, 3436463468, 7411495499, 12995261895, 28034824487
Offset: 1

Views

Author

N. J. A. Sloane, Sep 03 2000

Keywords

Crossrefs

Extensions

a(29)-a(40) from John Mason, Oct 11 2022

A056884 Number of asymmetric n-celled polyominoes without holes.

Original entry on oeis.org

0, 0, 0, 1, 5, 20, 84, 311, 1165, 4276, 15802, 58280, 216070, 803116, 2997360, 11221443, 42147842, 158749808, 599513836, 2269390757, 8609258335, 32725209938, 124621150623, 475367241264, 1816100804241, 6948222137523, 26618662003342, 102102765921611, 392095326233619, 1507357249572269, 5800716924062537, 22344021033377558
Offset: 1

Views

Author

N. J. A. Sloane, Sep 03 2000

Keywords

Crossrefs

Cf. A000104, A006749 (with holes allowed).

Formula

a(n) = A000104(n) - (A056879(n) + A056881(n) + A056883(n) + A056880(n) + A056882(n) + A357647(n) + A357648(n))

Extensions

a(27)-a(32) from John Mason, Oct 11 2022

A057051 Number of polyominoes of 2n-1 cells that span an n X n square.

Original entry on oeis.org

1, 1, 6, 18, 73, 255, 950, 3473, 13006, 48840, 185353, 706404, 2706608, 10404625, 40126430, 155133811, 601119492, 2333671638, 9075290555, 35345525798, 137847145330, 538258922839, 2104101413400, 8233434921693, 32247613423563, 126410623214720, 495918571702575
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Programs

  • Maple
    A057051 := proc(n) if n mod 2 = 0 then binomial(2*n-2,n-1)+2^(n-2)-(3*n^2-2*n+8)/8; else binomial(2*n-2,n-1)+2^(n-2)-(3*n^2-4*n+9)/8+(1/2)*binomial(n-1,(n-1)/2); end if; end proc;
  • Mathematica
    f[n_] := If[EvenQ[n], Binomial[2n-2, n-1] + 2^(n-2) - (3n^2-2n+8)/8, Binomial[2n-2, n-1] + 2^(n-2) - (3n^2-4n+9)/8 + (1/2) Binomial[n-1, (n-1)/2]]; Table[f[n], {n, 1, 27}] (* Jean-François Alcover, Mar 18 2017, translated from Maple *)

Formula

See Maple code.
Previous Showing 21-30 of 37 results. Next