cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A086855 Number of permutations of length n with exactly 4 rising or falling successions.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 22, 226, 2198, 22120, 236968, 2732268, 33940644, 453148422, 6480322210, 98907371822, 1605581578202, 27631315113916, 502618772515748, 9637245372790760, 194291040277517688, 4109014039030693578, 90968013940830446574, 2104072961763468757082
Offset: 0

Views

Author

N. J. A. Sloane, Aug 19 2003

Keywords

Comments

Permutations of 12...n such that exactly 4 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

Crossrefs

Twice A001268.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    a:= n-> ceil(coeff(S(n), t, 4)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Ceiling[Coefficient[S[n], t, 4]]; Table [a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)

Formula

Coefficient of t^4 in S[n](t) defined in A002464.
a(n) ~ 2/3*exp(-2) * n!. - Vaclav Kotesovec, Aug 14 2013

A383857 Number of permutations of [n] such that precisely one rising or falling succession occurs, but without either n(n-1) or (n-1)n.

Original entry on oeis.org

0, 0, 2, 8, 34, 196, 1366, 10928, 98330, 983036, 10811134, 129714184, 1686103522, 23603603540, 354033474374, 5664286296416, 96289603698346, 1733166940314028, 32929480177913230, 658578501071986616, 13829959293448920434, 304255691156335505924
Offset: 1

Views

Author

Wolfdieter Lang, May 19 2025

Keywords

Comments

See A086852 or 2*A000130 for the counting including the successions n(n-1) and (n-1)n. See also the k = 1 columns of the triangles A001100 and 2*A086856.
For the number of permutations of length n without rising or falling successions see A002464(n).

Examples

			a(3) = 2*1 from the permutations 213 and the reverted 312.
a(4) = 2*4 from 1324, 1423, 2314, 3124 and the reverted 4231, 3241, 4132, 4213.
a(5) = 2*17 from the permutations corresponding to A086852(5) = 2*20, without 13542, 24513, 25413, and the reverted 24531, 31542, 31452.
		

Crossrefs

Formula

a(n) = A002464(n+1) - (n-1) * A002464(n).
Previous Showing 11-12 of 12 results.