cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A239895 Triangle read by rows: T(n,k) (n >= 1, 1 <= k <= n) = number of alternating anagrams on n letters (of length 2n) which are decomposable into at most k components.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 16, 15, 6, 1, 129, 110, 45, 10, 1, 1438, 1104, 435, 105, 15, 1, 20955, 14455, 5334, 1295, 210, 21, 1, 384226, 238536, 81256, 19089, 3220, 378, 28, 1, 8623101, 4834854, 1509246, 335496, 56259, 7056, 630, 36, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 04 2014

Keywords

Comments

The Bell transform of A218827(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 17 2016

Examples

			Triangle begins:
       1;
       1,      1;
       3,      3,     1;
      16,     15,     6,     1;
     129,    110,    45,    10,    1;
    1438,   1104,   435,   105,   15,   1;
   20955,  14455,  5334,  1295,  210,  21,  1;
  384226, 238536, 81256, 19089, 3220, 378, 28, 1;
		

Crossrefs

Row sums are A000366. First column is A218827.

Programs

  • Mathematica
    m = 10(*terms of A218827 for m-1 rows*); matc = Array[0&, {m, m}];
    (* The function BellMatrix is defined in A264428.*)
    a366[n_] := (-2^(-1))^(n - 2)*Sum[Binomial[n, k]*(1 - 2^(n + k + 1))* BernoulliB[n + k + 1], {k, 0, n}];
    ci[n_, k_] := ci[n, k] = Module[{v}, If[matc[[n, k]] == 0, If[n == k, v = 1, If[k == 1, v = c[n], v = Sum[Binomial[n - 1, i - 1]*c[i]*ci[n - i, k - 1], {i, 1, n - k + 1}]]]; matc[[n, k]] = v]; Return[matc[[n, k]] ]];
    c[n_] := a366[n + 1] - If[n == 1, 0, Sum[ci[n, i], {i, 2, n}]]
    T = Rest /@ BellMatrix[c[# + 1]&, m] // Rest;
    Table[T[[n, k]], {n, 1, m - 1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 03 2019 *)
  • Sage
    # uses[bell_matrix from A264428, A218827]
    # Adds a column 1,0,0,0,... at the left side of the triangle.
    A239895_generator = lambda n: A218827(n+1)
    bell_matrix(A239895_generator, 9) # Peter Luschny, Jan 17 2016

Formula

T(n,k) = C(n-1,0)*c(1)*T(n-1,k-1) + C(n-1,1)*c(2)*T(n-2,k-1) + ... + C(n-1,n-1)*c(n-k+1)*T(k-1,k-1), where c(i) = A218827(i).

Extensions

More terms from Peter Luschny, Jan 17 2016

A108959 Triangle arising in connection with deformations of type D Kleinian singularities.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 10, 14, 7, 5, 20, 54, 76, 38, 6, 35, 154, 419, 590, 295, 7, 56, 364, 1616, 4400, 6196, 3098, 8, 84, 756, 4962, 22048, 60036, 84542, 42271, 9, 120, 1428, 12984, 85300, 379052, 1032154, 1453468, 726734, 10, 165, 2508, 30162, 274516, 1803638, 8014990, 21824737, 30733358, 15366679
Offset: 0

Views

Author

Paul Boddington, Jul 22 2005

Keywords

Examples

			Triangle begins:
  1;
  2,  1;
  3,  4,  2;
  4, 10, 14,  7;
  5, 20, 54, 76, 38;
  ...
		

Crossrefs

This sequence is an improved version of A097418. Coefficients of 1 give A000366.
Cf. A128813 (the p_k polynomials).

Programs

  • PARI
    tabl(nn) = my(v = vector(nn)); for (n=1, nn, my(p=prod(i=1, n, x+i*(i-1)/2), q=n*p/x); v[n] = q - sum(i=1, n-1, polcoeff(p, i)*v[i])); vector(nn, k, Vec(v[k])); \\ Michel Marcus, Mar 18 2023

Formula

For k>=0 define p_k(x) = x(x+1)(x+3)...(x+k(k-1)/2) and consider the linear map taking each p_k(x) to k*p_k(x)/x. Then the images of x, x^2, x^3, ... are given by the rows. E.g., x^3 goes to 3x^2 + 4x + 2.

Extensions

More terms from Michel Marcus, Mar 18 2023

A343198 Regular triangle T(n,k) of Dellac configurations with boundaries, n>=1 and k>=0.

Original entry on oeis.org

1, 2, 3, 7, 9, 15, 38, 45, 63, 111, 295, 333, 423, 621, 1131, 3098, 3393, 4059, 5373, 8127, 15123, 42271, 45369, 52155, 64665, 87939, 135729, 256335, 726734, 769005, 859743, 1019601, 1295163, 1794825, 2810403, 5364471, 15366679, 16093413, 17631423, 20256021, 24549831, 31731453, 44583183, 70558101, 135751731
Offset: 1

Views

Author

Michel Marcus, Apr 07 2021

Keywords

Examples

			Triangle begins:
    1
    2   3
    7   9  15
   38  45  63 111
  295 333 423 621 1131
  ...
		

Crossrefs

Cf. A000366 (1st column), A130168 (right diagonal).

Formula

T(n, 0) = 2*T(n-1, 0) + Sum_{k=1..n-2} T(n-1, k).
Previous Showing 11-13 of 13 results.