A223094
Number of foldings of n labeled stamps in which leaf n is inwards.
Original entry on oeis.org
0, 0, 2, 6, 26, 78, 288, 888, 3130, 9850, 34112, 108998, 374636, 1211046, 4148816, 13533796, 46304730, 152153758, 520434552, 1720325302, 5885686496, 19552190624, 66927118548, 223264746520, 764725528072, 2560239468774, 8775478294368, 29470844083770
Offset: 1
A046721
Number of semi-meanders of order n with 2 components.
Original entry on oeis.org
1, 2, 6, 16, 48, 140, 428, 1308, 4072, 12796, 40432, 129432, 413900, 1342580, 4335288, 14201804, 46226896, 152594276, 500016036, 1660630740, 5472190206, 18264517264, 60475691308, 202684618564, 673892675030, 2266436498400, 7562707682032, 25510762766704, 85394319699916
Offset: 2
A046722
Number of semi-meanders of order n with 3 components.
Original entry on oeis.org
1, 3, 11, 37, 126, 430, 1454, 4976, 16880, 57824, 197010, 675428, 2310268, 7927778, 27205180, 93448486, 321537086, 1105589516, 3812424912, 13121988240, 45330375774, 156172996170, 540314673678, 1863197292582, 6454265995454, 22275589419432, 77246945788890, 266813803179348
Offset: 3
- Andrew Howroyd, Table of n, a(n) for n = 3..40
- P. Di Francesco, O. Golinelli, and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995.
- P. Di Francesco, O. Golinelli, and E. Guitter, Meander, folding and arch statistics, Mathematical and Computer Modelling 26 (1997), 97-147.
A046723
Number of semi-meanders of order n with 4 components.
Original entry on oeis.org
1, 4, 17, 66, 254, 956, 3584, 13256, 49052, 179552, 658560, 2394504, 8724464, 31575096, 114451388, 412811544, 1490190544, 5360943684, 19288139802, 69245171564, 248463024330, 890477645192, 3188033497580, 11409453277272, 40771092374710, 145735210316376, 519955750491512
Offset: 4
A046724
Number of semi-meanders of order n with 5 components.
Original entry on oeis.org
1, 5, 24, 104, 438, 1796, 7238, 28848, 113518, 444278, 1720384, 6643492, 25421620, 97136712, 368280210, 1395104236, 5250325378, 19746342212, 73863421894, 276113486146, 1027609657470, 3821478801772, 14161346139866, 52428406903688, 193568833452364, 713860635606784
Offset: 5
A046725
Number of semi-meanders of order n with 6 components.
Original entry on oeis.org
1, 6, 32, 152, 690, 3028, 12996, 54812, 228284, 939148, 3833076, 15487428, 62244564, 247973928, 984221764, 3876113404, 15223550024, 59379645924, 231124139318, 894157177372, 3453279084296, 13266154255196, 50886266714598, 194294744477756, 740816697816046
Offset: 6
A086441
Number of inequivalent ways a semi-infinite curve can cross a straight line n times.
Original entry on oeis.org
1, 1, 2, 4, 11, 27, 79, 213, 644, 1840, 5660
Offset: 1
The a(3) = 2 solutions with 3 crossings. The line is drawn horizontally. The curve starts at oo and ends at X. The crossings are indicated by stars.
-- X
/ \ /
-----*----*----*----
/ \ /
/ --
/
oo
---
/ \
/ X \
/ | \
-----*----*----*----
/ | /
/ .---
/
oo
A223095
Number of foldings of n labeled stamps in which both end leaves are inwards.
Original entry on oeis.org
0, 0, 0, 2, 10, 40, 156, 546, 1986, 6716, 23742, 79472, 277178, 925588, 3205896, 10711486, 36963722, 123712788, 426075994, 1429030624, 4916833424, 16526958144, 56840484232, 191466923584, 658460090994, 2222507917328, 7644360501390, 25850724646008, 88938175307354
Offset: 1
A259698
Triangle read by rows: T(n,k) = number of permutations without overlaps having k increasing runs.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 10, 6, 1, 1, 10, 23, 22, 9, 1, 1, 14, 44, 61, 41, 12, 1, 1, 22, 87, 158, 148, 71, 16, 1, 1, 30, 151, 352, 436, 301, 114, 20, 1, 1, 46, 280, 791, 1210, 1092, 589, 175, 25, 1, 1, 62, 464, 1592, 2969, 3317, 2408, 1038, 256, 30, 1
Offset: 2
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 6, 10, 6, 1;
1, 10, 23, 22, 9, 1;
1, 14, 44, 61, 41, 12, 1;
1, 22, 87, 158, 148, 71, 16, 1;
1, 30, 151, 352, 436, 301, 114, 20, 1;
1, 46, 280, 791, 1210, 1092, 589, 175, 25, 1;
1, 62, 464, 1592, 2969, 3377, 2408, 1038, 256, 30, 1;
...
-
Overlapfree(v)={for(i=1, #v, for(j=i+1, v[i]-1, if(v[j]>v[i], return(0)))); 1}
Chords(u)={my(n=2*#u, v=vector(n), s=u[#u]); if(s%2==0, s=n+1-s); for(i=1, #u, my(t=n+1-s); s=u[i]; if(s%2==0, s=n+1-s); v[s]=t; v[t]=s); v}
Runs(v)={my(u=vector(#v), s=1); for(i=1, #v, u[v[i]]=i); for(i=2, #u-1, if(sign(u[i]-u[i-1])==sign(u[i]-u[i+1]), s++)); s}
row(n)={my(r=vector(n-1)); if(n>=2, forperm(n, v, if(v[1]<>1, break); if(Overlapfree(Chords(v)), r[Runs(v)]++))); r}
for(n=2, 8, print(row(n))) \\ Andrew Howroyd, Dec 07 2018
A259700
a(n) = Sum_{k=2..n-1} k*A259698(n,k).
Original entry on oeis.org
1, 3, 8, 25, 72, 229, 689, 2224, 6875, 22457, 70767
Offset: 2
Comments