cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A223094 Number of foldings of n labeled stamps in which leaf n is inwards.

Original entry on oeis.org

0, 0, 2, 6, 26, 78, 288, 888, 3130, 9850, 34112, 108998, 374636, 1211046, 4148816, 13533796, 46304730, 152153758, 520434552, 1720325302, 5885686496, 19552190624, 66927118548, 223264746520, 764725528072, 2560239468774, 8775478294368, 29470844083770
Offset: 1

Views

Author

N. J. A. Sloane, Mar 29 2013

Keywords

Comments

Subset of foldings of n labeled stamps (A000136). [Stéphane Legendre, Apr 09 2013]
From Roger Ford, Aug 23 2024: (Start)
a(n) represents the number of impossible stamp foldings with stamp 1 on top and n+1 stamps that are correctly folded for the first n stamps. From stamp n to stamp n+1, the stamp connection crosses a folding so the folding is impossible.
Example a(3) = 2. Impossible foldings = 1,3,2,4 and 1,4,2,3.
1 __ 1 __
Stamp numbers 3 __|__ Vertical Lines 4 __|__
2 |_| | lines are folds 2 __| |
4 _____| 3 |___|
a(4) = 6, and that means for 5 stamps there are 6 impossible foldings with the first impossible folding occurring from stamp 4 to stamp 5. Impossible foldings = 1,2,4,3,5; 1,2,5,3,4; 1,3,4,2,5; 1,4,3,5,2; 1,5,2,4,3; 1,5,3,4,2. (End)

Crossrefs

Programs

Formula

a(n) = A000136(n) - A000682(n+1). - Andrew Howroyd, Dec 05 2015
For n >= 3: a(n) = n! - Sum_{k=3..n-1} (a(k)*n!/k!) - A000682(n+1). - Roger Ford, Aug 24 2024

Extensions

More terms from Stéphane Legendre, Apr 09 2013

A046721 Number of semi-meanders of order n with 2 components.

Original entry on oeis.org

1, 2, 6, 16, 48, 140, 428, 1308, 4072, 12796, 40432, 129432, 413900, 1342580, 4335288, 14201804, 46226896, 152594276, 500016036, 1660630740, 5472190206, 18264517264, 60475691308, 202684618564, 673892675030, 2266436498400, 7562707682032, 25510762766704, 85394319699916
Offset: 2

Views

Author

Keywords

Crossrefs

Extensions

a(15)-a(30) from Andrew Howroyd, Nov 27 2015

A046722 Number of semi-meanders of order n with 3 components.

Original entry on oeis.org

1, 3, 11, 37, 126, 430, 1454, 4976, 16880, 57824, 197010, 675428, 2310268, 7927778, 27205180, 93448486, 321537086, 1105589516, 3812424912, 13121988240, 45330375774, 156172996170, 540314673678, 1863197292582, 6454265995454, 22275589419432, 77246945788890, 266813803179348
Offset: 3

Views

Author

Keywords

Crossrefs

Extensions

a(15)-a(30) from Andrew Howroyd, Nov 27 2015

A046723 Number of semi-meanders of order n with 4 components.

Original entry on oeis.org

1, 4, 17, 66, 254, 956, 3584, 13256, 49052, 179552, 658560, 2394504, 8724464, 31575096, 114451388, 412811544, 1490190544, 5360943684, 19288139802, 69245171564, 248463024330, 890477645192, 3188033497580, 11409453277272, 40771092374710, 145735210316376, 519955750491512
Offset: 4

Views

Author

Keywords

Crossrefs

Extensions

a(15)-a(40) from Andrew Howroyd, Dec 07 2015

A046724 Number of semi-meanders of order n with 5 components.

Original entry on oeis.org

1, 5, 24, 104, 438, 1796, 7238, 28848, 113518, 444278, 1720384, 6643492, 25421620, 97136712, 368280210, 1395104236, 5250325378, 19746342212, 73863421894, 276113486146, 1027609657470, 3821478801772, 14161346139866, 52428406903688, 193568833452364, 713860635606784
Offset: 5

Views

Author

Keywords

Crossrefs

Extensions

a(15)-a(40) from Andrew Howroyd, Dec 07 2015

A046725 Number of semi-meanders of order n with 6 components.

Original entry on oeis.org

1, 6, 32, 152, 690, 3028, 12996, 54812, 228284, 939148, 3833076, 15487428, 62244564, 247973928, 984221764, 3876113404, 15223550024, 59379645924, 231124139318, 894157177372, 3453279084296, 13266154255196, 50886266714598, 194294744477756, 740816697816046
Offset: 6

Views

Author

Keywords

Crossrefs

Extensions

a(15)-a(40) from Andrew Howroyd, Dec 07 2015

A086441 Number of inequivalent ways a semi-infinite curve can cross a straight line n times.

Original entry on oeis.org

1, 1, 2, 4, 11, 27, 79, 213, 644, 1840, 5660
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2003

Keywords

Comments

This uses a too broad notion of equivalence. Besides the obvious reflection in a plane perpendicular to the straight line, if the end of the curve is in a free region of the plane, it is extended to infinity and the direction of the curve can then be reversed. A000560 uses a better definition of equivalence.

Examples

			The a(3) = 2 solutions with 3 crossings. The line is drawn horizontally. The curve starts at oo and ends at X. The crossings are indicated by stars.
       --        X
      /  \      /
-----*----*----*----
    /      \  /
   /        --
  /
oo
         ---
        /   \
       /  X  \
      /   |   \
-----*----*----*----
    /     |   /
   /      .---
  /
oo
		

Crossrefs

Isomorphism classes (using too generous a definition of isomorphism) from A000682. Cf. A000560, A001011.

A223095 Number of foldings of n labeled stamps in which both end leaves are inwards.

Original entry on oeis.org

0, 0, 0, 2, 10, 40, 156, 546, 1986, 6716, 23742, 79472, 277178, 925588, 3205896, 10711486, 36963722, 123712788, 426075994, 1429030624, 4916833424, 16526958144, 56840484232, 191466923584, 658460090994, 2222507917328, 7644360501390, 25850724646008, 88938175307354
Offset: 1

Views

Author

N. J. A. Sloane, Mar 29 2013

Keywords

Comments

Subset of foldings of n labeled stamps (A000136). - Stéphane Legendre, Apr 09 2013

Crossrefs

Programs

Formula

a(n) = A223094(n) - A223093(n). - Andrew Howroyd, Dec 06 2015
a(n) = A000136(n) + A077014(n) - 2 * A000682(n). - Andrew Howroyd, Dec 06 2015
A217318(n) = a(n) if n is odd and A217318(n) = (1/2)*a(n) if n is even. - Stéphane Legendre, Jan 13 2014

Extensions

Name clarified by Stéphane Legendre, Apr 09 2013
More terms from Stéphane Legendre, Apr 09 2013

A259698 Triangle read by rows: T(n,k) = number of permutations without overlaps having k increasing runs.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 10, 6, 1, 1, 10, 23, 22, 9, 1, 1, 14, 44, 61, 41, 12, 1, 1, 22, 87, 158, 148, 71, 16, 1, 1, 30, 151, 352, 436, 301, 114, 20, 1, 1, 46, 280, 791, 1210, 1092, 589, 175, 25, 1, 1, 62, 464, 1592, 2969, 3317, 2408, 1038, 256, 30, 1
Offset: 2

Views

Author

N. J. A. Sloane, Jul 05 2015

Keywords

Comments

The sums s(n) = Sum_k k*T(n,k) give A259700.
Albert Sade in Sur les Chevauchements des Permutation (published by the author in French in 1949) gave the following example for determining the number of increasing runs in a permutation: 176852943 has 3 runs: 123 (left to right), 34567 (right to left), 789 (right to left).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   4,    1;
  1,  6,  10,    6,    1;
  1, 10,  23,   22,    9,    1;
  1, 14,  44,   61,   41,   12,    1;
  1, 22,  87,  158,  148,   71,   16,    1;
  1, 30, 151,  352,  436,  301,  114,   20,   1;
  1, 46, 280,  791, 1210, 1092,  589,  175,  25,  1;
  1, 62, 464, 1592, 2969, 3377, 2408, 1038, 256, 30, 1;
  ...
		

Crossrefs

Row sums give A000682.
Cf. A259700.

Programs

  • PARI
    Overlapfree(v)={for(i=1, #v, for(j=i+1, v[i]-1, if(v[j]>v[i], return(0)))); 1}
    Chords(u)={my(n=2*#u, v=vector(n), s=u[#u]); if(s%2==0, s=n+1-s); for(i=1, #u, my(t=n+1-s); s=u[i]; if(s%2==0, s=n+1-s); v[s]=t; v[t]=s); v}
    Runs(v)={my(u=vector(#v), s=1); for(i=1, #v, u[v[i]]=i); for(i=2, #u-1, if(sign(u[i]-u[i-1])==sign(u[i]-u[i+1]), s++)); s}
    row(n)={my(r=vector(n-1)); if(n>=2, forperm(n, v, if(v[1]<>1, break); if(Overlapfree(Chords(v)), r[Runs(v)]++))); r}
    for(n=2, 8, print(row(n))) \\ Andrew Howroyd, Dec 07 2018

Extensions

Corrected and extended by Roger Ford, Jul 06 2016

A259700 a(n) = Sum_{k=2..n-1} k*A259698(n,k).

Original entry on oeis.org

1, 3, 8, 25, 72, 229, 689, 2224, 6875, 22457, 70767
Offset: 2

Views

Author

N. J. A. Sloane, Jul 05 2015

Keywords

Comments

Sade gives a(5)=25, but that is wrong.

Crossrefs

Extensions

Corrected and extended by Roger Ford, Jul 13 2016
Previous Showing 11-20 of 35 results. Next