cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A156430 Number of n X n arrays of squares of integers, symmetric about both diagonal and antidiagonal, with all rows summing to 2.

Original entry on oeis.org

1, 2, 10, 12, 84, 132, 954, 1728, 13290, 26820, 217500, 481320, 4086600, 9783480, 86549820, 221921280, 2037627900, 5552479800, 52745205240, 151802154000, 1487961422640, 4500041903280, 45412066438200, 143712079822080, 1490217165997560, 4917227802767280
Offset: 2

Views

Author

R. H. Hardin, Feb 09 2009

Keywords

Crossrefs

Programs

  • Python
    # Even-dim bisymmetric
    A = [1, 1, 10]
    B = [0, 2, 6]
    C = [0, 1, 6]
    for n in range(3, 13):
        a_next = A[-1] + (n-1)*A[-2] + 4*(n-1)*B[-1] + 2*(n-1)*(n-2)*C[-1]
        b_next = 2*A[-1] + 2*(n-1)*B[-1]
        c_next = 4*B[-1] - 2*A[-2] + 4*(n-2)*A[-3] + 4*(n-2)*(n-3)*C[-2]
        A.append(a_next)
        B.append(b_next)
        C.append(c_next)
    # Odd-dim bisymmetric
    A_odd = [B[n]*n for n in range(len(B))]
    # Albert Zhou, Jan 26 2025

Formula

From Albert Zhou, Jan 26 2025: (Start)
a(2*n) = a(2*(n-1)) + (n-1)*a(2*(n-2)) + 4*(n-1)*b(2*(n-1)) + 2*(n-1)*(n-2)*c(2*(n-1)), where
b(2*n) = 2*a(2*(n-1)) + 2*(n-1)*b(2*(n-1)), and
c(2*n) = 4*b(2*(n-1)) - 2*a(2*(n-2)) + 4*(n-2)*a(2*(n-3)) + 4*(n-2)*(n-3)*c(2*(n-2)), with
a(0) = 1, a(2) = 1, a(4) = 10, and
b(0) = 0, b(2) = 2, b(4) = 6, and
c(0) = 0, c(2) = 1, c(6) = 6.
a(2*n+1) = n*b(2*n).
Proof attached. (End)

Extensions

a(26)-a(27) from Albert Zhou, Jan 26 2025
Previous Showing 11-11 of 11 results.