cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A322797 Powerful tau numbers.

Original entry on oeis.org

1, 8, 9, 36, 72, 108, 128, 225, 288, 441, 625, 864, 972, 1089, 1152, 1521, 1800, 1944, 2000, 2025, 2601, 2700, 3249, 3456, 3528, 3600, 4500, 4761, 5000, 5292, 5625, 6561, 6912, 7569, 7776, 8100, 8649, 8712, 10000, 10800, 12168, 12321, 12348, 13068, 15129, 16000, 16200, 16641, 18000
Offset: 1

Views

Author

Torlach Rush, Jan 10 2019

Keywords

Comments

If the largest exponent among the prime factors of a(n) does not exceed 2 then A046692(a(n)) = sqrt(a(n)), otherwise A046692(a(n)) = 0.

Examples

			1 is a term because A033950(1) = A001694(1) = 1.
8 is a term because A033950(8) divides A001694(3).
9 is a term because A033950(9) divides A001694(4).
36 is a term because A033950(36) divides A001694(9).
		

Crossrefs

Intersection of A001694 (powerful numbers) and A033950 (tau numbers).

Programs

  • Mathematica
    powtauQ[1] = True; powtauQ[n_] := Min[e = (Last /@ FactorInteger[n])] > 1 && Divisible[n, Times @@ (e + 1)]; Select[Range[18000], powtauQ] (* Amiram Eldar, Dec 30 2019 *)
  • PARI
    isok(n) = ispowerful(n) && ((n % numdiv(n)) == 0); \\ Michel Marcus, Jan 16 2019

Extensions

Corrected and extended by Michel Marcus, Jan 16 2019

A330251 Numbers k such that phi(k) = phi(k+3), where phi (A000010) is Euler's totient function.

Original entry on oeis.org

3, 5, 8720288051472, 9134280520365, 41544070492925, 42466684755492, 51363581614342, 68616494581632, 113312918293575, 210911076210835, 215517565688425, 294988451482725, 383617980270525, 432759876053505, 442863123838135, 532068058516992, 892813363927485, 923102743748185, 929531173876305
Offset: 1

Views

Author

Michel Marcus and Giovanni Resta, Feb 29 2020

Keywords

Comments

10^15 < a(20) <= 1089641067389872.
Also terms: 1248817919303952, 1332436545865422, 1394926716616125, 1868522795664525, 1950445682260072.
a(4) and a(9) appear in Kevin Ford's paper.

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], EulerPhi[#] == EulerPhi[# + 3] &] (* Alonso del Arte, Mar 01 2020 *)
  • PARI
    isok(k) = eulerphi(k) == eulerphi(k+3); \\ Michel Marcus, Feb 29 2020

A330429 Numbers k such that phi(k) = phi(k+9), where phi (A000010) is Euler's totient function.

Original entry on oeis.org

9, 15, 1005079920836, 13695542245376, 26160864154416, 27402841561095, 27599063056565, 110263115897935, 124632211478775, 127400054266476, 154090744843026, 205849483744896, 231019991767556, 339938754880725, 459718637643265, 632733228632505, 646552697065275, 683008674773416, 884965354448175
Offset: 1

Views

Author

Giovanni Resta, Mar 01 2020

Keywords

Comments

a(20) > 10^15.

Crossrefs

A330702 Numbers k such that psi(k) = psi(k + 2) and phi(k) = phi(k + 2), where psi(k) is the Dedekind psi function (A001615) and phi(k) is the Euler totient function (A000010).

Original entry on oeis.org

70, 308, 572, 2132, 4292, 6764, 12212, 32804, 72836, 79292, 169724, 198596, 207692, 289052, 362972, 392426, 545876, 547724, 611612, 651932, 678812, 687812, 809252, 842012, 868436, 930932, 1030772, 1032956, 1122932, 1336052, 1627772, 1705892, 1722932, 2173772
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2019

Keywords

Comments

Sandor asked whether this sequence is infinite.
Apparently the only common solution to psi(n) = psi(n+1) and phi(n) = phi(n+1) is 15.

Examples

			70 is a term since psi(70) = psi (72) = 144 and phi(70) = phi(72) = 24.
		

Crossrefs

Intersection of A001494 and A330703.

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[10^5], psi[#] == psi[# + 2] && EulerPhi[#] == EulerPhi[#+2] &]

A330902 Odd numbers k such that s(k) = s(k+2), where s(k) is Schemmel's totient function of order 2 (A058026).

Original entry on oeis.org

1, 9359, 23933, 97405, 131493, 304589, 529205, 6005613, 6024473, 6057257, 7636517, 9566549, 11481581, 25143017, 25439117, 28542745, 40473869, 57712193, 58761197, 69502169, 77085497, 78481397, 81127109, 95223857, 99815303, 104092517, 112282481, 119954477, 130052613
Offset: 1

Views

Author

Amiram Eldar, May 01 2020

Keywords

Comments

Since s(k) = 0 for all even numbers k, they are trivial solutions of the equation s(k) = s(k+2) and therefore they were excluded from this sequence.
Analogous to A001494 since Schemmel's totient functions are a generalization of the Euler totient function (A000010).

Examples

			1 is a term since s(1) = s(3) = 1.
9359 is a term since s(9359) = s(9361) = 6615.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 276.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p-2) * p^(e-1); s[1]=1; s[n_] := Times @@ (f @@@ FactorInteger[n]); seq={}; s1 = 1; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-2]]; s1 = s2, {n, 3, 10^6, 2}]; seq

A333742 Numbers k such that lambda(k) = lambda(k+2), where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

4, 6, 7, 180, 208, 427, 1183, 1330, 1404, 1480, 1584, 1651, 1672, 2013, 2695, 2715, 3256, 3439, 5250, 5668, 5698, 5950, 5955, 7600, 12243, 13392, 13715, 14768, 22263, 22878, 23347, 24804, 26100, 30500, 32940, 43648, 45870, 46205, 52548, 54481, 59148, 59780, 62719
Offset: 1

Views

Author

Amiram Eldar, Apr 03 2020

Keywords

Examples

			4 is a term since lambda(4) = lambda(6) = 2.
		

Crossrefs

Programs

Previous Showing 11-16 of 16 results.