cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A046910 Number of connected irreducible quasiorders with n labeled points.

Original entry on oeis.org

1, 1, 1, 1, 25, 1321, 70201, 4542721, 384969649, 44087846545, 6926924885881, 1503058888234201, 451117640363382697, 186980881340749198561, 106678398214255092939169, 83440038893764124092029601, 89093417035281194970121062073, 129323858612953057624127147727913, 254190262374139251098507525465587609
Offset: 0

Views

Author

John A. Wright

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 18; A[x_] :=Total[Cases[Import["https://oeis.org/A000798/b000798.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
    Range[0, nn]! CoefficientList[Series[1 + Log[A[x]] - A[x] (1 - 1/A[x])^2, {x, 0, nn}], x] (* Geoffrey Critzer, Jul 10 2022 *)

Formula

From Geoffrey Critzer, Jul 10 2022: (Start)
E.g.f.: 1 + log(A(x)) - A(x)*(1 - 1/A(x))^2 where A(x) is the e.g.f. for A000798.
a(n) = A001929(n) - Sum_{k>=2} A335987(n,k). (End)

Extensions

a(8)-a(18) from Geoffrey Critzer, Jul 10 2022

A247232 Triangular array read by rows: T(n,k) is the number of pre-orders on an n-set with exactly k connected components in its digraph representation, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 3, 1, 19, 9, 1, 233, 103, 18, 1, 4851, 1735, 325, 30, 1, 158175, 43201, 7320, 785, 45, 1, 7724333, 1567783, 218491, 22960, 1610, 63, 1, 550898367, 82142943, 8856974, 818461, 59570, 2954, 84, 1, 56536880923, 6187176225, 496368181, 37205658, 2518131, 135198, 4998, 108, 1
Offset: 1

Views

Author

Geoffrey Critzer, Nov 27 2014

Keywords

Comments

The Bell transform of A001929(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			1;
3,         1;
19,        9,        1;
233,       103,      18,      1;
4851,      1735,     325,     30,     1;
158175,    43201,    7320,    785,    45,    1;
7724333,   1567783,  218491,  22960,  1610,  63,   1;
550898367, 82142943, 8856974, 818461, 59570, 2954, 84, 1;
		

Crossrefs

Column 1 = A001929.
Row sums = A000798.

Programs

  • Mathematica
    A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
    lg = Length[A001035];
    A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
    Rest[CoefficientList[#, y]]& /@ (CoefficientList[A[Exp[x] - 1]^y + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    topo = oeis('A001929')  # Fetch the data via Internet.
    A001929List = topo.first_terms()
    A001929 = lambda n: A001929List[n]
    bell_matrix(lambda n: A001929(n+1), 10) # Peter Luschny, Jan 18 2016, updated Mar 25 2020

Formula

E.g.f.: A(exp(x)-1)^y where A(x) is the e.g.f. for A001035.
Previous Showing 11-12 of 12 results.