cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 259 results. Next

A024594 s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), ...), t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

2, 5, 17, 24, 54, 71, 137, 166, 296, 342, 588, 674, 1132, 1264, 2093, 2337, 3835, 4216, 6882, 7455, 12129, 13171, 21385, 22991, 37280, 39664, 64264, 68539, 110991, 117400, 190057, 201677, 326426, 344314, 557224, 583768, 944675, 992284, 1605675, 1677193
Offset: 1

Views

Author

Keywords

A024600 s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (odd natural numbers), t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

2, 5, 22, 31, 78, 104, 198, 240, 395, 456, 688, 784, 1110, 1236, 1671, 1846, 2406, 2620, 3321, 3577, 4433, 4756, 5784, 6159, 7374, 7804, 9222, 9739, 11376, 11957, 13828, 14510, 16632, 17389, 19778, 20613, 23283, 24237, 27205, 28247, 31528, 32703, 36313
Offset: 1

Views

Author

Keywords

A024686 s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = A000201 (lower Wythoff sequence), t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

2, 5, 22, 31, 71, 94, 175, 212, 349, 403, 597, 679, 957, 1065, 1420, 1568, 2032, 2212, 2802, 3016, 3718, 3987, 4839, 5152, 6169, 6529, 7693, 8122, 9480, 9962, 11486, 12051, 13792, 14420, 16398, 17088, 19268, 20054, 22495, 23355, 26015, 26984, 29932, 30978
Offset: 1

Views

Author

Keywords

A024689 a(n) = s(1)s(n) + s(2)s(n-1) + ... + s(k)s(n+1-k), where k = [ (n+1)/2 ], s = A001950 (upper Wythoff sequence).

Original entry on oeis.org

4, 10, 39, 55, 125, 165, 302, 365, 591, 682, 1006, 1144, 1602, 1782, 2374, 2620, 3386, 3685, 4650, 5005, 6162, 6607, 8003, 8519, 10176, 10768, 12676, 13382, 15596, 16388, 18888, 19815, 22660, 23689, 26907, 28038, 31601, 32889, 36865, 38272, 42626, 44210
Offset: 1

Views

Author

Keywords

A024691 s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = A001950 (upper Wythoff sequence), t = A014306.

Original entry on oeis.org

0, 2, 7, 5, 9, 7, 14, 24, 37, 35, 47, 45, 60, 57, 75, 72, 93, 90, 113, 137, 162, 160, 188, 185, 217, 214, 248, 245, 281, 279, 317, 314, 356, 353, 396, 390, 434, 429, 475, 525, 576, 574, 628, 625, 683, 680, 739, 737, 799, 797, 862, 859, 927, 924, 995, 990, 1059, 1055
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

a(46) corrected by Sean A. Irvine, Jul 20 2019

A024864 s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

5, 7, 24, 33, 71, 87, 153, 177, 279, 319, 465, 519, 717, 794, 1052, 1147, 1473, 1588, 1989, 2136, 2620, 2792, 3367, 3565, 4239, 4479, 5260, 5531, 6426, 6746, 7764, 8120, 9269, 9663, 10950, 11402, 12835, 13330, 14917, 15477, 17226, 17833, 19752, 20408, 22504, 23235
Offset: 2

Views

Author

Keywords

A024888 a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = A023531, t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

0, 0, 7, 10, 13, 15, 18, 20, 38, 44, 48, 54, 60, 64, 70, 75, 106, 114, 121, 130, 137, 145, 153, 160, 169, 177, 223, 233, 244, 255, 265, 275, 286, 297, 307, 317, 328, 339, 403, 416, 430, 442, 456, 469, 481, 496, 508, 521, 534, 547, 561, 574, 659, 675, 690, 707, 722, 737, 755
Offset: 2

Views

Author

Keywords

Crossrefs

A025074 a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = A023532, t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

5, 7, 10, 13, 25, 31, 48, 56, 64, 71, 98, 108, 138, 153, 188, 204, 220, 235, 280, 297, 347, 368, 422, 446, 505, 531, 558, 584, 651, 680, 753, 785, 863, 896, 980, 1017, 1105, 1144, 1184, 1224, 1319, 1362, 1463, 1507, 1615, 1661, 1774, 1824, 1941, 1993, 2115, 2170, 2226
Offset: 1

Views

Author

Keywords

A025085 s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

0, 5, 7, 17, 23, 48, 59, 107, 124, 218, 250, 424, 474, 790, 883, 1454, 1599, 2617, 2835, 4620, 5017, 8154, 8767, 14224, 15134, 24530, 26162, 42377, 44824, 72576, 77014, 124663, 131495, 212819, 222957, 360811, 378995, 613289, 640606, 1036587, 1086216, 1757602
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Table[Sum[Fibonacci[k]*Floor[(n - k + 1)*GoldenRatio^2], {k, 1, Floor[n/2]}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 06 2019 *)

Extensions

a(1)=0 added by Vaclav Kotesovec, Aug 06 2019

A025095 s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

5, 7, 31, 43, 94, 115, 225, 260, 466, 536, 924, 1034, 1738, 1943, 3220, 3541, 5815, 6301, 10290, 11177, 18188, 19557, 31758, 33790, 54798, 58446, 94701, 100172, 162224, 172146, 278691, 293965, 475809, 498477, 806725, 847385, 1371279, 1432360, 2317799, 2428770
Offset: 1

Views

Author

Keywords

Previous Showing 61-70 of 259 results. Next