cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-74 of 74 results.

A131700 Sum of all n-digit Cullen numbers.

Original entry on oeis.org

13, 90, 1443, 6658, 81923, 827395, 17956868, 157286403, 1434451971, 12884901891, 114353504259, 1005022347267, 8761733283843, 166026255794180, 1337006139375619, 11434920928870403, 97390341941886979, 1799188051134513156, 14231374822490767363, 119903836479112085507
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 15 2007

Keywords

Examples

			Sum of all 1-digit Cullen numbers is 1 + 3 + 9 = 13.
Sum of all 2-digit Cullen numbers is 25 + 65 = 90.
Sum of all 3-digit Cullen numbers is 161 + 385 + 897 = 1443.
		

Crossrefs

Cf. A002064.

Programs

  • Mathematica
    digNum[n_] := Length @ IntegerDigits[n]; cullen[n_] := n * 2^n + 1; digCount = 0; sum = 0; cumsum = {}; Do[c = cullen[n]; If[digNum[c] > digCount, digCount++; AppendTo[cumsum, sum]]; sum += c, {n, 0, 65}]; Differences[cumsum] (* Amiram Eldar, Nov 30 2019 *)

Extensions

More terms from Amiram Eldar, Nov 30 2019

A264751 Triangle read by rows: T(n,k) is the number of sequences of k <= n throws of an n-sided die (with faces numbered 1, 2, ..., n) in which the sum of the throws first reaches or exceeds n on the k-th throw.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 9, 11, 4, 1, 14, 26, 19, 5, 1, 20, 50, 55, 29, 6, 1, 27, 85, 125, 99, 41, 7, 1, 35, 133, 245, 259, 161, 55, 8, 1, 44, 196, 434, 574, 476, 244, 71, 9, 1, 54, 276, 714, 1134, 1176, 804, 351, 89, 10, 1, 65, 375, 1110, 2058, 2562, 2190, 1275, 485, 109, 11
Offset: 1

Views

Author

Louis Rogliano, Nov 26 2015

Keywords

Comments

By empirical observation: Sum of rows is A002064.

Examples

			Triangle begins:
  1
  1    2
  1    5    3
  1    9   11    4
  1   14   26   19    5
  1   20   50   55   29    6
  1   27   85  125   99   41    7
  1   35  133  245  259  161   55    8
  1   44  196  434  574  476  244   71    9
  1   54  276  714 1134 1176  804  351   89   10
  1   65  375 1110 2058 2562 2190 1275  485  109   11
		

Crossrefs

Columns are: A000012 (k=1), A000096 (k=2), A051925 (k=3), A215862 (k=4), A264750 (k=5).
Cf. A007318 (binomial(n-1,k-1) = number of sequences of k throws of an n-sided die in which the sum of the throws equals n).
See also A002064.

Programs

  • Mathematica
    T[n_, k_] := Module[
    {i, total = 0, part, perm},
    part = IntegerPartitions[n, {k}];
    perm = Flatten[Table[Permutations[part[[i]]], {i, 1, Length[part]}],      1];
    For[i = 1, i <= Length[perm], i++,    total += n + 1 - perm[[i, k]]    ];
    Return[total];   ]
    (* The rows are obtained by: *)
    g[n_] := Table[T[n,k], {k,1,n}]
    (* And the triangle is obtained by: *)
    Table[g[n],{n,1,number_of_rows_wanted}]

Formula

Sum_{k = 1..n} T(n,k)*k/n^k = ((n+1)/n)^(n-1) = expected value of k.
Lim_{n->infinity} (expected value of k) = e = 2.71828182845... - Jon E. Schoenfield, Nov 26 2015
T(n,k) = Sum_{i=k..n} i*binomial(i-2,k-2). - Danny Rorabaugh, Mar 04 2016
T(n,n-1) = 2*T(n-1,n-1) + T(n-1,n-2).
By empirical observation, g.f. for column k: (x-k)/(x-1)^(k+1).

A354272 Irregular triangle read by rows: coefficients of polynomials which are the product of all possible monic Littlewood polynomials of degree n.

Original entry on oeis.org

1, -1, 0, 1, 1, 0, -2, 0, -1, 0, -2, 0, 1, 1, 0, -4, 0, 2, 0, -4, 0, 15, 0, 8, 0, -36, 0, 8, 0, 15, 0, -4, 0, 2, 0, -4, 0, 1, 1, 0, -8, 0, 20, 0, -24, 0, 58, 0, -80, 0, -92, 0, 120, 0, 147, 0, 384, 0, -2108, 0, 880, 0, 3940, 0, -3096, 0, 2288, 0, -2136, 0, -1803, 0, -2136, 0, 2288, 0, -3096, 0, 3940, 0, 880, 0, -2108, 0, 384, 0, 147, 0, 120, 0, -92, 0, -80, 0, 58, 0, -24, 0, 20, 0, -8, 0, 1
Offset: 0

Views

Author

Gleb Ivanov, May 22 2022

Keywords

Examples

			The triangle T(n, k) begins
n\k  1 2  3 4  5 6  7 8 9 10 11 12  13 14 15 16 17 18 19 20 21 22 23 24 25
0:   1
1:  -1 0  1
2:   1 0 -2 0 -1 0 -2 0 1
3:   1 0 -4 0  2 0 -4 0 15 0  8  0 -36  0  8  0 15  0 -4  0  2  0 -4  0  1
...
E.g., row 2: {1,0,-2,0,-1,0,-2,0,1} corresponds to polynomial 1-2x^2-x^4-2x^6+x^8.
Number of terms in each row equals A002064(n).
		

Crossrefs

Cf. A020985, A002064 (row lengths).

Programs

  • PARI
    row(n) = { Vecrev(Vec(prod (k=2^n, 2^(n+1)-1, Pol(apply(d -> if (d, 1, -1), binary(k)))))) } \\ Rémy Sigrist, Jul 21 2022
  • Python
    from itertools import product
    def mult_pol(s1, s2):
        res = [0]*(len(s1)+len(s2)-1)
        for o1,i1 in enumerate(s1):
            for o2,i2 in enumerate(s2):
                res[o1+o2] += i1*i2
        return res
    out = []
    for d in range(0, 5):
        startp = [1,]
        for i in product((1,-1),repeat = d):
            startp = mult_pol(startp, list(i)+[1,])
        out.extend(startp)
    print(out)
    

A373867 Perfect powers of the form x^y + y^x, where x > 1 and y > 1.

Original entry on oeis.org

8, 32, 100, 512, 33554432, 36893488147419103232, 2923003274661805836407369665432566039311865085952, 78804012392788958424558080200287227610159478540930893335896586808491443542994421222828532509769831281613255980613632
Offset: 1

Views

Author

Gonzalo Martínez, Jun 21 2024

Keywords

Comments

Subsequence of A076980: a(n) is a Leyland number that is a perfect power. The condition that x > 1 and y > 1 is necessary, otherwise every perfect power would belong to this sequence, since m^n = (m^n-1)^1 + 1^(m^n-1).
If x = y = 2^k, then x^y + y^x = 2^(k*2^k + 1) belongs to this sequence for all k > 0, and (k*2^k + 1) is the k-th Cullen number. That is, 2^A002064(k) is a term, with k > 0, from which it follows that this sequence has infinitely many terms.
Conjecture: 32 and 100 are the only terms for which x != y: 2^4 + 4^2 = 2^5 = 32 and 2^6 + 6^2 = 10^2 = 100.

Examples

			100 is a term, because 100 = 10^2 and 100 = 2^6 + 6^2.
		

Crossrefs

Previous Showing 71-74 of 74 results.