cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A125616 (Sum of the quadratic nonresidues of prime(n)) / prime(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 7, 7, 9, 9, 10, 11, 14, 13, 16, 15, 17, 21, 18, 22, 22, 22, 24, 25, 28, 28, 27, 28, 34, 35, 34, 36, 37, 41, 39, 41, 47, 43, 47, 45, 54, 48, 49, 54, 54, 59, 59, 57, 58, 67, 60, 66, 64, 72, 67, 73, 69, 70, 72, 73, 78, 87, 78, 79, 84, 84, 89, 87, 88, 99, 96, 93, 96
Offset: 3

Views

Author

Nick Hobson, Nov 30 2006

Keywords

Comments

Always an integer for primes >= 5.

Examples

			The quadratic nonresidues of 7=prime(4) are 3, 5 and 6. Hence a(4) = (3+5+6)/7 = 2.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 185.

Crossrefs

Programs

  • Maple
    a:= proc(n) local p;
       p:= ithprime(n);
       convert(select(t->numtheory:-legendre(t,p)=-1, [$1..p-1]),`+`)/p;
    end proc:
    seq(a(n),n=3..100); # Robert Israel, May 10 2015
  • Mathematica
    Table[Total[Flatten[Position[Table[JacobiSymbol[a, p], {a, p - 1}], -1]]]/ p, {p, Prime[Range[3, 100]]}] (* Geoffrey Critzer, May 10 2015 *)
  • PARI
    vector(73, m, p=prime(m+2); t=1; for(i=2, (p-1)/2, t+=((i^2)%p)); (p-1)/2-t/p)

Formula

a(n) = A125615(n)/prime(n).
If prime(n) = 4k+1 then a(n) = k = A076410(n).

A355879 Class number of Q(sqrt((-1)^((p-1)/2)*p)), where p = prime(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 7, 1, 5, 3, 1, 1, 1, 5, 3, 1, 1, 5, 5, 1, 3, 1, 7, 1, 1, 11, 1, 5, 1, 13, 1, 1, 9, 3, 7, 5, 3, 1, 15, 1, 7, 3, 13, 1, 11, 1, 1, 3, 1, 3, 19, 1, 1, 3, 1, 5, 1, 1, 19, 9, 1, 3, 17, 1, 1, 5, 1, 9, 1, 21, 1, 15, 5, 1, 1, 1, 7
Offset: 1

Views

Author

Jianing Song, Jul 20 2022

Keywords

Comments

For n > 1, class number of the unique quadratic field with discriminant +-p, p = prime(n).
a(1) corresponds to Q(sqrt(2*i)) = Q(1+i) = Q(i).
All terms are odd.

Examples

			prime(9) = 23, Q(sqrt(-23)) has class number 3, so a(9) = 3.
prime(15) = 47, Q(sqrt(-47)) has class number 5, so a(15) = 5.
prime(20) = 71, Q(sqrt(-71)) has class number 7, so a(20) = 7.
prime(50) = 229, Q(sqrt(229)) has class number 3, so a(50) = 3.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n==1, 1, my(p=prime(n)); qfbclassno(if(p%4==1, p, -p)))

A101435 Dimension of a certain space of modular forms of weight 2 and level p^2, where p runs through the primes > 3 that are == 3 mod 4. See reference for precise definition.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 11, 11, 11, 13, 13, 15, 15, 17, 17, 17, 19, 19, 21, 21, 23, 23, 23, 25, 27, 27, 29, 31, 31, 31, 33, 35, 37, 37, 37, 39, 39, 41, 41, 41, 41, 43, 43, 45, 47, 47, 49, 51, 51, 51, 53, 53, 55, 55, 57, 57, 61, 61, 61, 63, 63, 65, 67, 69, 69, 71, 71, 73
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2006

Keywords

Crossrefs

Cf. A002143.

Programs

  • Maple
    with(numtheory); L:=legendre; f:=p->(p+5)/12 + (1-L(-3,p))/3-(1-L(2,p))/2;

A165186 a(n) = Sum_{k=1..n} (k*(n-k) mod n).

Original entry on oeis.org

0, 1, 4, 6, 10, 17, 28, 36, 30, 45, 66, 82, 78, 105, 140, 136, 136, 141, 190, 230, 238, 253, 322, 380, 250, 325, 360, 434, 406, 505, 558, 592, 572, 561, 700, 678, 666, 741, 910, 980, 820, 917, 946, 1122, 1050, 1173, 1316, 1432, 1078, 1125, 1394, 1430, 1378, 1449
Offset: 1

Views

Author

Wouter Meeussen, Sep 06 2009

Keywords

Comments

Comment from Max Alekseyev, Nov 22 2009: For a prime p==3 (mod 4), a(p) = p*h(-p) + p*(p-1)/2 where h(-p) is the class number (listed in A002143). For example, h(-19)=1 and a(19) = 19*1 + 19*18/2 = 190.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Mod[k (n-k),n],{k,n}],{n,100}]
Previous Showing 11-14 of 14 results.