cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 165 results. Next

A384872 Decimal expansion of the surface area of a pentagonal orthocupolarotunda with unit edge.

Original entry on oeis.org

2, 3, 5, 3, 8, 5, 3, 2, 3, 3, 2, 5, 0, 6, 0, 5, 8, 3, 1, 0, 0, 4, 1, 0, 0, 7, 6, 2, 2, 3, 6, 7, 2, 8, 8, 5, 7, 1, 8, 8, 7, 1, 3, 8, 8, 9, 1, 8, 6, 0, 3, 1, 5, 6, 5, 9, 6, 5, 8, 9, 3, 9, 1, 2, 2, 1, 1, 1, 8, 3, 1, 7, 5, 8, 8, 7, 0, 7, 6, 3, 7, 5, 8, 3, 8, 1, 3, 8, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Jun 11 2025

Keywords

Comments

The pentagonal orthocupolarotunda is Johnson solid J_32.
Also the surface area of a pentagonal gyrocupolarotunda (Johnson solid J_33) with unit edge.

Examples

			23.538532332506058310041007622367288571887138891860...
		

Crossrefs

Cf. A384871 (volume).

Programs

  • Mathematica
    First[RealDigits[5 + 15/4*Sqrt[3] + 7/4*Sqrt[25 + 10*Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J32", "SurfaceArea"], 10, 100]]

Formula

Equals 5 + (15/4)*sqrt(3) + (7/4)*sqrt(25 + 10*sqrt(5)) = 5 + (15/4)*A002194 + (7/4)*sqrt(25 + 10*A002163).
Equals the largest root of 256*x^8 - 10240*x^7 + 57600*x^6 + 1856000*x^5 - 21756000*x^4 + 6320000*x^3 + 484812500*x^2 - 364125000*x - 342171875.

A385260 Decimal expansion of the volume of a gyroelongated pentagonal bicupola with unit edge.

Original entry on oeis.org

1, 1, 3, 9, 7, 3, 7, 8, 5, 1, 2, 2, 1, 3, 3, 8, 1, 1, 2, 4, 0, 8, 9, 4, 3, 3, 0, 9, 3, 5, 0, 5, 6, 8, 0, 2, 1, 2, 4, 4, 6, 8, 7, 9, 5, 0, 3, 6, 7, 8, 0, 2, 3, 9, 7, 4, 9, 9, 4, 9, 0, 7, 2, 8, 8, 7, 7, 7, 4, 4, 7, 4, 8, 9, 1, 5, 3, 4, 2, 3, 4, 7, 3, 3, 0, 5, 5, 6, 5, 7
Offset: 2

Views

Author

Paolo Xausa, Jun 27 2025

Keywords

Comments

The gyroelongated pentagonal bicupola is Johnson solid J_46.

Examples

			11.397378512213381124089433093505680212446879503678...
		

Crossrefs

Cf. A385261 (surface area).

Programs

  • Mathematica
    First[RealDigits[(10 + 8*# + 5*Sqrt[2*(Sqrt[650 + 290*#] - # - 1)])/6 & [Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J46", "Volume"], 10, 100]]

Formula

Equals (10 + 8*sqrt(5) + 5*sqrt(2*(sqrt(650 + 290*sqrt(5)) - sqrt(5) - 1)))/6 = (10 + 8*A002163 + 5*sqrt(2*(sqrt(650 + 290*A002163) - A002163 - 1)))/6.
Equals the largest real root of 6561*x^8 - 87480*x^7 + 313470*x^6 + 753300*x^5 - 22424850*x^4 - 84591000*x^3 - 85909500*x^2 + 8715000*x + 35547500.

A385261 Decimal expansion of the surface area of a gyroelongated pentagonal bicupola with unit edge.

Original entry on oeis.org

2, 6, 4, 3, 1, 3, 3, 5, 8, 5, 7, 9, 4, 4, 5, 1, 3, 5, 4, 6, 9, 7, 3, 8, 7, 1, 5, 1, 6, 0, 7, 1, 2, 6, 1, 9, 5, 0, 8, 8, 5, 7, 8, 7, 7, 4, 3, 5, 9, 8, 2, 5, 1, 3, 6, 8, 8, 3, 2, 7, 4, 1, 7, 5, 9, 9, 3, 7, 2, 3, 5, 6, 1, 1, 2, 3, 3, 9, 3, 2, 7, 4, 0, 7, 7, 3, 4, 7, 8, 8
Offset: 2

Views

Author

Paolo Xausa, Jun 27 2025

Keywords

Comments

The gyroelongated pentagonal bicupola is Johnson solid J_46.

Examples

			26.431335857944513546973871516071261950885787743598...
		

Crossrefs

Cf. A385260 (volume).

Programs

  • Mathematica
    First[RealDigits[(20 + 15*Sqrt[3] + Sqrt[25 + 10*Sqrt[5]])/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J46", "SurfaceArea"], 10, 100]]

Formula

Equals (20 + 15*sqrt(3) + sqrt(25 + 10*sqrt(5)))/2 = (20 + 15*A002194 + sqrt(25 + 10*A002163))/2.
Equals the largest root of x^8 - 80*x^7 + 2100*x^6 - 14000*x^5 - 174750*x^4 + 1390000*x^3 + 9603125*x^2 + 9937500*x - 6546875.

A385509 Decimal expansion of the volume of an augmented pentagonal prism with unit edge.

Original entry on oeis.org

1, 9, 5, 6, 1, 7, 9, 6, 6, 0, 9, 8, 4, 4, 8, 2, 7, 6, 4, 2, 2, 5, 9, 6, 0, 0, 9, 8, 0, 9, 0, 2, 2, 5, 9, 4, 5, 8, 3, 5, 6, 5, 2, 8, 1, 5, 9, 0, 6, 3, 5, 6, 3, 4, 1, 4, 0, 3, 2, 0, 7, 9, 9, 6, 6, 8, 8, 9, 9, 1, 0, 7, 1, 9, 5, 2, 6, 5, 0, 7, 3, 7, 8, 0, 7, 5, 0, 5, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Jul 01 2025

Keywords

Comments

The augmented pentagonal prism is Johnson solid J_52.

Examples

			1.9561796609844827642259600980902259458356528159...
		

Crossrefs

Cf. A385510 (surface area).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[233 + 90*Sqrt[5] + 12*Sqrt[50 + 20*Sqrt[5]]]/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J52", "Volume"], 10, 100]]

Formula

Equals sqrt(233 + 90*sqrt(5) + 12*sqrt(50 + 20*sqrt(5)))/12 = sqrt(233 + 90*A002163 + 12*sqrt(50 + 20*A002163))/12.
Equals the largest root of 429981696*x^8 - 2782937088*x^6 + 4776205824*x^4 - 1630792512*x^2 + 43414921.

A385695 Decimal expansion of the volume of an augmented dodecahedron with unit edge.

Original entry on oeis.org

7, 9, 6, 4, 6, 2, 1, 7, 9, 3, 0, 2, 0, 4, 5, 6, 5, 3, 9, 3, 9, 9, 7, 6, 9, 4, 8, 9, 8, 1, 0, 2, 0, 3, 2, 5, 5, 1, 6, 4, 4, 4, 1, 2, 2, 7, 6, 3, 7, 3, 1, 6, 9, 2, 2, 6, 5, 2, 0, 2, 4, 2, 3, 1, 3, 6, 0, 5, 1, 6, 6, 5, 8, 4, 3, 4, 4, 0, 0, 4, 4, 4, 7, 8, 4, 1, 5, 9, 1, 4
Offset: 1

Views

Author

Paolo Xausa, Jul 08 2025

Keywords

Comments

The augmented dodecahedron is Johnson solid J_58.

Examples

			7.9646217930204565393997694898102032551644412276373...
		

Crossrefs

Cf. A385696 (surface area).

Programs

  • Mathematica
    First[RealDigits[(95 + 43*Sqrt[5])/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J58", "Volume"], 10, 100]]

Formula

Equals (95 + 43*sqrt(5))/24 = (95 + 43*A002163)/24.
Equals A102769 + A179552.
Equals the largest root of 144*x^2 - 1140*x - 55.

A386000 Decimal expansion of the volume of a tridiminished icosahedron with unit edge.

Original entry on oeis.org

1, 2, 7, 7, 1, 8, 6, 4, 9, 3, 4, 3, 7, 4, 3, 8, 6, 6, 1, 4, 5, 2, 6, 7, 5, 6, 5, 3, 3, 7, 9, 9, 5, 5, 5, 6, 8, 6, 7, 0, 1, 8, 0, 3, 5, 4, 8, 8, 6, 6, 9, 5, 0, 0, 2, 9, 1, 2, 3, 4, 5, 0, 2, 9, 9, 1, 1, 4, 0, 1, 9, 3, 6, 6, 4, 4, 3, 5, 9, 7, 6, 2, 3, 2, 9, 2, 0, 4, 2, 0
Offset: 1

Views

Author

Paolo Xausa, Jul 14 2025

Keywords

Comments

The tridiminished icosahedron is Johnson solid J_63.

Examples

			1.277186493437438661452675653379955568670180...
		

Crossrefs

Cf. A386001 (surfacea area).

Programs

  • Mathematica
    First[RealDigits[5/8 + 7*Sqrt[5]/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J63", "Volume"], 10, 100]]

Formula

Equals 5/8 + 7*sqrt(5)/24 = 5/8 + 7*A002163/24.
Equals A102208 - 3*A179552 = A386002 - A020829.
Equals the largest root of 144*x^2 - 180*x - 5.

A386002 Decimal expansion of the volume of an augmented tridiminished icosahedron with unit edge.

Original entry on oeis.org

1, 3, 9, 5, 0, 3, 7, 6, 2, 3, 6, 3, 5, 1, 9, 6, 5, 8, 2, 1, 8, 6, 1, 4, 9, 7, 1, 3, 7, 3, 0, 7, 6, 3, 7, 4, 1, 8, 8, 4, 3, 1, 9, 6, 7, 7, 8, 3, 4, 7, 7, 4, 0, 0, 9, 0, 1, 0, 4, 0, 1, 6, 7, 4, 7, 4, 3, 9, 6, 2, 9, 7, 6, 5, 1, 6, 2, 0, 2, 0, 1, 5, 5, 6, 6, 7, 3, 6, 4, 9
Offset: 1

Views

Author

Paolo Xausa, Jul 18 2025

Keywords

Comments

The augmented tridiminished icosahedron is Johnson solid J_64.

Examples

			1.3950376236351965821861497137307637418843196778...
		

Crossrefs

Cf. A386003 (surface area).

Programs

  • Mathematica
    First[RealDigits[(15 + Sqrt[8] + 7*Sqrt[5])/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J64", "Volume"], 10, 100]]

Formula

Equals (15 + 2*sqrt(2) + 7*sqrt(5))/24 = (15 + A010466 + 7*A002163)/24.
Equals the largest root of 2304*x^4 - 5760*x^3 + 3376*x^2 + 280*x - 49.

A386466 Decimal expansion of the volume of a parabiaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

8, 9, 6, 8, 7, 7, 5, 5, 1, 9, 6, 0, 3, 7, 2, 6, 7, 8, 1, 6, 5, 5, 8, 5, 4, 9, 2, 3, 7, 6, 2, 9, 1, 9, 4, 5, 9, 1, 2, 9, 9, 6, 0, 0, 6, 8, 8, 5, 4, 1, 0, 7, 9, 7, 3, 2, 6, 6, 6, 2, 6, 7, 3, 8, 3, 1, 7, 0, 0, 6, 2, 6, 9, 4, 5, 9, 0, 7, 5, 2, 4, 7, 9, 4, 1, 8, 1, 6, 8, 0
Offset: 2

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The parabiaugmented truncated dodecahedron is Johnson solid J_69.
Also the volume of a metabiaugmented truncated dodecahedron (Johnson solid J_70) with unit edges.

Examples

			89.68775519603726781655854923762919459129960068854...
		

Crossrefs

Cf. A386543 (surface area).

Programs

  • Mathematica
    First[RealDigits[(515 + 251*Sqrt[5])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J69", "Volume"], 10, 100]]

Formula

Equals (515 + 251*sqrt(5))/12 = (515 + 251*A002163)/12.
Equals A377695 + 2*A179590.
Equals the largest root of 36*x^2 - 3090*x - 12445.

A386544 Decimal expansion of the volume of a triaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

9, 2, 0, 1, 1, 8, 0, 0, 5, 1, 4, 3, 7, 0, 4, 6, 0, 9, 4, 7, 4, 9, 7, 9, 9, 8, 3, 5, 0, 1, 1, 6, 7, 1, 2, 0, 8, 1, 5, 9, 3, 3, 4, 6, 2, 6, 1, 6, 1, 5, 4, 3, 0, 2, 1, 5, 5, 1, 3, 5, 3, 2, 2, 1, 3, 4, 4, 3, 7, 4, 3, 3, 1, 1, 6, 8, 2, 6, 2, 2, 4, 1, 2, 3, 6, 1, 1, 1, 0, 9
Offset: 2

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The triaugmented truncated dodecahedron is Johnson solid J_71.

Examples

			92.01180051437046094749799835011671208159334626...
		

Crossrefs

Cf. A386545 (surface area).

Programs

  • Mathematica
    First[RealDigits[7/12*(75 + 37*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J71", "Volume"], 10, 100]]

Formula

Equals (7/12)*(75 + 37*sqrt(5)) = (7/12)*(75 + 37*A002163).
Equals A377695 + 3*A179590.
Equals the largest root of 36*x^2 - 3150*x - 14945.

A386689 Decimal expansion of the volume of a diminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

3, 9, 2, 9, 1, 2, 7, 8, 4, 6, 4, 1, 6, 4, 7, 7, 3, 9, 3, 4, 3, 4, 9, 2, 2, 9, 6, 8, 5, 2, 4, 8, 1, 5, 2, 7, 8, 5, 6, 3, 2, 2, 3, 1, 9, 0, 3, 1, 7, 0, 3, 9, 8, 1, 8, 5, 1, 0, 4, 7, 4, 1, 8, 7, 5, 3, 6, 1, 3, 5, 4, 9, 9, 7, 4, 0, 6, 9, 1, 0, 7, 6, 1, 3, 9, 6, 3, 9, 6, 3
Offset: 2

Views

Author

Paolo Xausa, Jul 29 2025

Keywords

Comments

The diminished rhombicosidodecahedron is Johnson solid J_76.
Also the volume of a paragyrate diminished rhombicosidodecahedron, a metagyrate diminished rhombicosidodecahedron and a bigyrate diminished rhombicosidodecahedron (Johnson solids J_77, J_78 and J_79, respectively) with unit edges.

Examples

			39.29127846416477393434922968524815278563223190317...
		

Crossrefs

Cf. A386690 (surface area).

Programs

  • Mathematica
    First[RealDigits[115/6 + 9*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J76", "Volume"], 10, 100]]

Formula

Equals 115/6 + 9*sqrt(5) = 115/6 + 9*A002163.
Equals A185093 - A179590.
Equals the largest root of 36*x^2 - 1380*x - 1355.
Previous Showing 71-80 of 165 results. Next