cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 218 results. Next

A272536 Decimal expansion of the edge length of a regular 20-gon with unit circumradius.

Original entry on oeis.org

3, 1, 2, 8, 6, 8, 9, 3, 0, 0, 8, 0, 4, 6, 1, 7, 3, 8, 0, 2, 0, 2, 1, 0, 6, 3, 8, 9, 3, 4, 3, 3, 3, 7, 8, 4, 6, 2, 7, 7, 9, 9, 7, 8, 4, 1, 7, 1, 3, 2, 1, 5, 8, 0, 1, 6, 9, 2, 8, 2, 6, 9, 2, 1, 1, 5, 5, 1, 7, 5, 8, 6, 6, 1, 1, 2, 4, 7, 1, 5, 8, 6, 7, 3, 3, 9, 1, 7, 4, 5, 3, 5, 3, 6, 9, 7, 3, 7, 6, 7, 5, 0, 2, 8, 0
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

Since 20-gon is constructible (see A003401), this is a constructible number.

Examples

			0.3128689300804617380202106389343337846277997841713215801692826921...
		

Crossrefs

Cf. A003401.
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17).
Cf. A019818.

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/20], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/20)

Formula

Equals 2*sin(Pi/20) = 2*A019818.
Equals also (sqrt(2)+sqrt(10)-2*sqrt(5-sqrt(5)))/4.
Equals i^(9/10) + i^(-9/10). - Gary W. Adamson, Jul 08 2022

A293328 Least integer k such that k/2^n > sqrt(1/3).

Original entry on oeis.org

1, 2, 3, 5, 10, 19, 37, 74, 148, 296, 592, 1183, 2365, 4730, 9460, 18919, 37838, 75675, 151349, 302698, 605396, 1210792, 2421583, 4843166, 9686331, 19372661, 38745321, 77490642, 154981283, 309962566, 619925132, 1239850263, 2479700525, 4959401050, 9918802099
Offset: 0

Views

Author

Clark Kimberling, Oct 10 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = Sqrt[1/3];
    Table[Floor[r*2^n], {n, 0, z}];   (* A293327 *)
    Table[Ceiling[r*2^n], {n, 0, z}]; (* A293328 *)
    Table[Round[r*2^n], {n, 0, z}];   (* A293329 *)

Formula

a(n) = ceiling(r*2^n), where r = sqrt(1/3).
a(n) = A293327(n) + 1.

A352453 Decimal expansion of the area of intersection of 4 unit-radius circles that have the vertices of a unit-side square as centers.

Original entry on oeis.org

3, 1, 5, 1, 4, 6, 7, 4, 3, 6, 2, 7, 7, 2, 0, 4, 5, 2, 6, 2, 6, 7, 6, 8, 1, 1, 9, 5, 8, 7, 2, 9, 5, 2, 6, 1, 1, 2, 2, 9, 1, 7, 8, 7, 9, 3, 1, 4, 6, 5, 4, 6, 4, 5, 6, 0, 2, 5, 0, 7, 8, 8, 4, 6, 5, 0, 6, 7, 2, 4, 5, 1, 8, 5, 3, 2, 6, 9, 6, 2, 9, 1, 2, 8, 1, 9, 8, 7, 5, 5, 0, 2, 3, 4, 5, 7, 1, 1, 3, 6, 5, 1, 7, 5, 6
Offset: 0

Views

Author

Amiram Eldar, Mar 16 2022

Keywords

Comments

The solution to a problem in Jones (1932): "At each corner of a garden, surrounded by a wall n yards square, a goat is tied with a rope n yards long. Find the area of the part of the garden common to the four goats." (When the square is taken to be of unit size, the common area is this constant.)
The perimeter of the shape formed by the intersection is 2*Pi/3 (A019693).
The solution to the three-dimensional version of this problem is A352454.

Examples

			0.31514674362772045262676811958729526112291787931465...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Pi/3 - Sqrt[3], 10, 100][[1]]

Formula

Equals 1 + Pi/3 - sqrt(3) = 1 + A019670 - A002194.

A377750 Decimal expansion of the surface area of a truncated icosahedron with unit edge length.

Original entry on oeis.org

7, 2, 6, 0, 7, 2, 5, 3, 0, 3, 4, 1, 3, 3, 9, 2, 1, 8, 7, 8, 9, 3, 1, 5, 3, 3, 9, 7, 3, 8, 3, 9, 4, 8, 6, 2, 0, 1, 1, 7, 2, 6, 4, 7, 6, 5, 4, 4, 3, 3, 7, 9, 8, 7, 9, 2, 1, 5, 9, 3, 4, 5, 8, 6, 7, 8, 4, 4, 4, 1, 8, 4, 1, 3, 7, 7, 1, 5, 9, 5, 8, 8, 8, 4, 2, 3, 6, 8, 0, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 06 2024

Keywords

Examples

			72.60725303413392187893153397383948620117264765443...
		

Crossrefs

Cf. A377751 (volume), A377752 (circumradius), A205769 (midradius + 1), A377787 (Dehn invariant).
Cf. A010527 (analogous for a regular icosahedron, with offset 1).

Programs

  • Mathematica
    First[RealDigits[3*(10*Sqrt[3] + Sqrt[25 + Sqrt[500]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosahedron", "SurfaceArea"], 10, 100]]
  • PARI
    3*(10*sqrt(3) + sqrt(25 + 10*sqrt(5))) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals 3*(10*sqrt(3) + sqrt(25 + 10*sqrt(5))) = 30*A002194 + 3*sqrt(25 + 10*A002163).
Equals 30*(A002194 + A375067).

A384872 Decimal expansion of the surface area of a pentagonal orthocupolarotunda with unit edge.

Original entry on oeis.org

2, 3, 5, 3, 8, 5, 3, 2, 3, 3, 2, 5, 0, 6, 0, 5, 8, 3, 1, 0, 0, 4, 1, 0, 0, 7, 6, 2, 2, 3, 6, 7, 2, 8, 8, 5, 7, 1, 8, 8, 7, 1, 3, 8, 8, 9, 1, 8, 6, 0, 3, 1, 5, 6, 5, 9, 6, 5, 8, 9, 3, 9, 1, 2, 2, 1, 1, 1, 8, 3, 1, 7, 5, 8, 8, 7, 0, 7, 6, 3, 7, 5, 8, 3, 8, 1, 3, 8, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Jun 11 2025

Keywords

Comments

The pentagonal orthocupolarotunda is Johnson solid J_32.
Also the surface area of a pentagonal gyrocupolarotunda (Johnson solid J_33) with unit edge.

Examples

			23.538532332506058310041007622367288571887138891860...
		

Crossrefs

Cf. A384871 (volume).

Programs

  • Mathematica
    First[RealDigits[5 + 15/4*Sqrt[3] + 7/4*Sqrt[25 + 10*Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J32", "SurfaceArea"], 10, 100]]

Formula

Equals 5 + (15/4)*sqrt(3) + (7/4)*sqrt(25 + 10*sqrt(5)) = 5 + (15/4)*A002194 + (7/4)*sqrt(25 + 10*A002163).
Equals the largest root of 256*x^8 - 10240*x^7 + 57600*x^6 + 1856000*x^5 - 21756000*x^4 + 6320000*x^3 + 484812500*x^2 - 364125000*x - 342171875.

A385261 Decimal expansion of the surface area of a gyroelongated pentagonal bicupola with unit edge.

Original entry on oeis.org

2, 6, 4, 3, 1, 3, 3, 5, 8, 5, 7, 9, 4, 4, 5, 1, 3, 5, 4, 6, 9, 7, 3, 8, 7, 1, 5, 1, 6, 0, 7, 1, 2, 6, 1, 9, 5, 0, 8, 8, 5, 7, 8, 7, 7, 4, 3, 5, 9, 8, 2, 5, 1, 3, 6, 8, 8, 3, 2, 7, 4, 1, 7, 5, 9, 9, 3, 7, 2, 3, 5, 6, 1, 1, 2, 3, 3, 9, 3, 2, 7, 4, 0, 7, 7, 3, 4, 7, 8, 8
Offset: 2

Views

Author

Paolo Xausa, Jun 27 2025

Keywords

Comments

The gyroelongated pentagonal bicupola is Johnson solid J_46.

Examples

			26.431335857944513546973871516071261950885787743598...
		

Crossrefs

Cf. A385260 (volume).

Programs

  • Mathematica
    First[RealDigits[(20 + 15*Sqrt[3] + Sqrt[25 + 10*Sqrt[5]])/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J46", "SurfaceArea"], 10, 100]]

Formula

Equals (20 + 15*sqrt(3) + sqrt(25 + 10*sqrt(5)))/2 = (20 + 15*A002194 + sqrt(25 + 10*A002163))/2.
Equals the largest root of x^8 - 80*x^7 + 2100*x^6 - 14000*x^5 - 174750*x^4 + 1390000*x^3 + 9603125*x^2 + 9937500*x - 6546875.

A385696 Decimal expansion of the surface area of an augmented dodecahedron with unit edge.

Original entry on oeis.org

2, 1, 0, 9, 0, 3, 1, 4, 9, 1, 5, 9, 3, 9, 7, 3, 2, 7, 6, 7, 2, 5, 8, 4, 3, 9, 6, 7, 8, 1, 5, 7, 0, 4, 6, 0, 5, 2, 1, 5, 9, 6, 2, 2, 4, 3, 7, 3, 7, 5, 1, 5, 7, 4, 0, 6, 3, 4, 7, 8, 0, 0, 5, 0, 1, 5, 7, 7, 4, 7, 5, 1, 8, 5, 4, 3, 4, 6, 2, 8, 5, 9, 1, 0, 0, 8, 2, 8, 6, 3
Offset: 2

Views

Author

Paolo Xausa, Jul 08 2025

Keywords

Comments

The augmented dodecahedron is Johnson solid J_58.

Examples

			21.090314915939732767258439678157046052159622437375...
		

Crossrefs

Cf. A385695 (volume).

Programs

  • Mathematica
    First[RealDigits[(5*Sqrt[3] + 11*Sqrt[25 + 10*Sqrt[5]])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J58", "SurfaceArea"], 10, 100]]

Formula

Equals (5*sqrt(3) + 11*sqrt(5*(5 + 2*sqrt(5))))/4 = (5*A002194 + 11*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 198400*x^6 + 41204000*x^4 - 1620087500*x^2 + 7460640625.

A386465 Decimal expansion of the surface area of an augmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 2, 1, 8, 2, 0, 9, 2, 2, 2, 0, 2, 1, 3, 9, 1, 8, 5, 7, 7, 9, 8, 8, 5, 4, 2, 4, 5, 2, 8, 1, 5, 3, 3, 2, 0, 5, 2, 9, 8, 4, 2, 1, 5, 9, 5, 3, 6, 1, 4, 3, 6, 8, 9, 9, 8, 1, 3, 2, 6, 8, 5, 2, 1, 3, 9, 0, 7, 1, 9, 0, 7, 8, 1, 5, 0, 3, 9, 6, 6, 7, 2, 0, 5, 9, 0, 9, 3, 2
Offset: 3

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The augmented truncated dodecahedron is Johnson solid J_68.

Examples

			102.18209222021391857798854245281533205298421595361...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 25*Sqrt[3] + 110*Sqrt[#] + Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J68", "SurfaceArea"], 10, 100]]

Formula

Equals (20 + 25*sqrt(3) + 110*sqrt(5 + 2*sqrt(5)) + sqrt(5*(5 + 2*sqrt(5))))/4 = (20 + 25*A002194 + 110*sqrt(5 + A010476) + sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 10240*x^7 - 3955200*x^6 + 122240000*x^5 + 16152924000*x^4 - 343551280000*x^3 - 11461251137500*x^2 + 131995515375000*x + 634637481578125.

A386543 Decimal expansion of the surface area of a parabiaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 3, 3, 7, 3, 4, 2, 4, 2, 8, 7, 3, 2, 5, 8, 4, 8, 6, 1, 1, 2, 3, 1, 1, 3, 5, 9, 1, 6, 9, 9, 4, 0, 0, 7, 5, 5, 1, 0, 5, 3, 3, 4, 1, 3, 3, 2, 0, 4, 3, 0, 6, 2, 0, 4, 4, 8, 1, 1, 6, 4, 8, 0, 1, 9, 3, 0, 8, 8, 1, 7, 8, 2, 3, 6, 1, 1, 2, 0, 5, 7, 0, 2, 1, 3, 8, 3, 2, 1
Offset: 3

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The parabiaugmented truncated dodecahedron is Johnson solid J_69.
Also the surface area of a metabiaugmented truncated dodecahedron (Johnson solid J_70) with unit edges.

Examples

			103.37342428732584861123113591699400755105334133204...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 15*Sqrt[3] + 50*Sqrt[#] + Sqrt[5*#])/2 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J69", "SurfaceArea"], 10, 100]]

Formula

Equals (20 + 15*sqrt(3) + 50*sqrt(5 + 2*sqrt(5)) + sqrt(5*(5 + 2*sqrt(5))))/2 = (20 + 15*A002194 + 50*sqrt(5 + A010476) + sqrt(5*(5 + A010476)))/2.
Equals the largest root of x^8 - 80*x^7 - 11400*x^6 + 796000*x^5 + 31475250*x^4 - 1804610000*x^3 - 8296459375*x^2 + 548931187500*x - 2544044046875.

A386545 Decimal expansion of the surface area of a triaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 4, 5, 6, 4, 7, 5, 6, 3, 5, 4, 4, 3, 7, 7, 7, 8, 6, 4, 4, 4, 7, 3, 7, 2, 9, 3, 8, 1, 1, 7, 2, 6, 8, 3, 0, 4, 9, 1, 2, 2, 4, 6, 6, 7, 1, 0, 4, 7, 1, 7, 5, 5, 0, 9, 1, 4, 9, 0, 6, 1, 0, 8, 2, 4, 7, 1, 0, 4, 4, 4, 8, 6, 5, 7, 1, 8, 4, 4, 4, 6, 8, 3, 6, 8, 5, 7, 1, 1
Offset: 3

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The triaugmented truncated dodecahedron is Johnson solid J_71.

Examples

			104.56475635443777864447372938117268304912246671047...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(60 + 35*Sqrt[3] + 90*Sqrt[#] + 3*Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J71", "SurfaceArea"], 10, 100]]

Formula

Equals (60 + 35*sqrt(3) + 90*sqrt(5 + 2*sqrt(5)) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (60 + 35*A002194 + 90*sqrt(5 + A010476) + 3*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 30720*x^7 - 1574400*x^6 + 238464000*x^5 + 68364000*x^4 - 390828240000*x^3 + 4437895162500*x^2 + 78660973125000*x - 1021409416546875.
Previous Showing 81-90 of 218 results. Next