cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A155565 Intersection of A001481 and A020669: N = a^2 + b^2 = c^2 + 5d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 4, 5, 9, 16, 20, 25, 29, 36, 41, 45, 49, 61, 64, 80, 81, 89, 100, 101, 109, 116, 121, 125, 144, 145, 149, 164, 169, 180, 181, 196, 205, 225, 229, 241, 244, 245, 256, 261, 269, 281, 289, 305, 320, 324, 349, 356, 361, 369, 389, 400, 401, 404, 405, 409, 421
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Contains A155575 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155565(n,/* use optional 2nd arg to get other analogous sequences */c=[5,1]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,500, isA155565(n) & print1(n","))

A155566 Intersection of A001481 and A002481: N = a^2 + b^2 = c^2 + 6d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 4, 9, 10, 16, 25, 36, 40, 49, 58, 64, 73, 81, 90, 97, 100, 106, 121, 144, 145, 160, 169, 193, 196, 202, 225, 232, 241, 250, 256, 265, 289, 292, 298, 313, 324, 337, 346, 360, 361, 388, 394, 400, 409, 424, 433, 441, 457, 484, 490, 505, 522, 529, 538, 576
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Contains A155576 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155566(n,/* use optional 2nd arg to get other analogous sequences */c=[6,1]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,600, isA155566(n) & print1(n","))

A155568 Intersection of A001481 inter A020670: N = a^2 + b^2 = c^2 + 7d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 4, 8, 9, 16, 25, 29, 32, 36, 37, 49, 53, 64, 72, 81, 100, 109, 113, 116, 121, 128, 137, 144, 148, 149, 169, 193, 196, 197, 200, 212, 225, 232, 233, 256, 261, 277, 281, 288, 289, 296, 317, 324, 333, 337, 361, 373, 389, 392, 400, 401, 421, 424, 436, 441, 449
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Contains A155578 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155568(n,/* use optional 2nd arg to get other analogous sequences */c=[7,1]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=0,500, isA155568(n) & print1(n","))

A155570 Intersection of A003136 and A020669: N = a^2 + 3b^2 = c^2 + 5d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 4, 9, 16, 21, 25, 36, 49, 61, 64, 81, 84, 100, 109, 121, 129, 144, 169, 181, 189, 196, 201, 225, 229, 241, 244, 256, 289, 301, 309, 324, 336, 349, 361, 381, 400, 409, 421, 436, 441, 469, 484, 489, 516, 525, 529, 541, 549, 576, 601, 625, 661, 669, 676, 709
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Contains A155710 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155570(n,/* use optional 2nd arg to get other analogous sequences */c=[5,3]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=0,800, isA155570(n) & print1(n","))

A301858 Positive integers which can be written as the sum of two squares but cannot be written as x^2 + y^2 + 2*z^2 with x and y integers and z a nonzero integer.

Original entry on oeis.org

1, 5, 29, 65
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 27 2018

Keywords

Comments

The sequence has no term in the interval [66, 10^6].
Conjecture 1: The sequence only has the four terms 1, 5, 29 and 65.
Conjecture 2: For any integer n > 1 which is neither 17 nor a power of 2, if n = u^2 + 2*v^2 for some integers u and v, then n = x^2 + 2*y^2 + 3*z^2 for some integers x,y,z with z nonzero.
Conjecture 3: For any positive integer n not of the form 4^k*m (k = 0,1,2,... and m = 1, 7, 13), if n = u^2 + 3*v^2 for some integers u and v, then n = x^2 + 2*y^2 + 3*z^2 for some integers x,y,z with y nonzero.

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[If[QQ[m]==False,Goto[aa]];Do[If[SQ[m-2x^2-y^2],Goto[aa]],{x,1,Sqrt[m/2]},{y,0,Sqrt[(m-2x^2)/2]}];tab=Append[tab,m];Label[aa],{m,1,1000}];Print[tab]

A034029 Numbers that are primitively represented by (x^2+2y^2 with x >= y >= 0).

Original entry on oeis.org

1, 3, 6, 11, 17, 18, 27, 33, 34, 38, 43, 51, 57, 66, 67, 81, 82, 83, 86, 89, 99, 102, 113, 114, 118, 121, 123, 129, 131, 139, 146, 153, 162, 171, 177, 179, 187, 193, 194, 198, 201, 209, 214, 219, 227, 233, 241, 242, 246, 249, 257, 258, 262, 267
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Definition corrected by N. J. A. Sloane, Apr 30 2015

A034032 Imprimitively but not primitively represented by x^2+2y^2.

Original entry on oeis.org

0, 4, 8, 12, 16, 24, 25, 32, 36, 44, 48, 49, 50, 64, 68, 72, 75, 76, 88, 96, 98, 100, 108, 128, 132, 136, 144, 147, 150, 152, 164, 169, 172, 176, 192, 196, 200, 204, 216, 225, 228, 236, 256, 264, 268, 272, 275, 288, 292, 294
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Corrected by N. J. A. Sloane, Apr 30 2015

A156381 Number of 3 X 3 arrays of squares of integers, symmetric about both diagonal and antidiagonal, with all rows summing to n.

Original entry on oeis.org

1, 2, 2, 1, 2, 0, 2, 0, 2, 4, 0, 2, 1, 0, 0, 0, 2, 2, 4, 2, 0, 0, 2, 0, 2, 4, 0, 3, 0, 0, 0, 0, 2, 4, 4, 0, 4, 0, 2, 0, 0, 4, 0, 2, 2, 0, 0, 0, 1, 2, 4, 5, 0, 0, 4, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 0, 6, 2, 2, 0, 0, 0, 4, 2, 0, 3, 2, 0, 0, 0, 0, 8, 2, 2, 0, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 2, 2, 7, 4, 0, 4, 0, 0, 0, 0, 2
Offset: 0

Views

Author

R. H. Hardin Feb 09 2009

Keywords

Comments

a(n) is nonzero if and only if n = x^2 + 2*y^2 for some integers x and y if and only if n is in A002479. - Michael Somos, Dec 15 2011

Examples

			All solutions for n=9
...0.0.9...1.4.4...4.4.1...9.0.0
...0.9.0...4.1.4...4.1.4...0.9.0
...9.0.0...4.4.1...1.4.4...0.0.9
		

Crossrefs

Cf. A002479.
Previous Showing 41-48 of 48 results.