cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A303900 Numbers k such that the average of all strong divisors of all positive integers <= k is an integer.

Original entry on oeis.org

2, 8, 12, 16, 67, 924122, 1067239
Offset: 1

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

We say d is a strong divisor of k iff d is a divisor of k and d > 1.
Numbers k such that A002541(k) | A024917(k).
a(8) > 10^12. - Giovanni Resta, May 05 2018

Crossrefs

Extensions

a(3)-a(7) corrected by Daniel Suteu, May 03 2018

A330285 The maximum number of arithmetic progressions in a sequence of length n.

Original entry on oeis.org

0, 0, 1, 3, 7, 12, 20, 29, 41, 55, 72, 90, 113, 137, 164, 194, 228, 263, 303, 344, 390, 439, 491, 544, 604, 666, 731, 799, 872, 946, 1027, 1109, 1196, 1286, 1379, 1475, 1579, 1684, 1792, 1903, 2021, 2140, 2266, 2393, 2525, 2662, 2802, 2943, 3093, 3245, 3402, 3562, 3727
Offset: 1

Views

Author

Joseph Wheat, Dec 21 2019

Keywords

Comments

The partial arithmetic density D_n(A) up to n is merely the number of arithmetic progressions, A(s(n)), divided by the total number of nonempty subsets of {s(1), s(2), ..., s(n)}, i.e., A(s(n))/(2^n - 1). As n approaches infinity, D_n(A) converges to zero. Furthermore, the infinite sum of the partial densities for any sequence always converges to the total density D(A). Every infinite arithmetic progression has the same total density, Sum_{n >= 1} a(n)/(2^n - 1) = alpha ~ 1.25568880818612911696845537; sequences with a finite number of progressions have D(A) < alpha; and sequences without any arithmetic progressions have D(A) = 0.

Crossrefs

Partial sums of A002541.

Programs

  • PARI
    a(n) = sum(i=1, n, sum(j=1, i, floor((i - 1)/(j + 1))))

Formula

a(n) = Sum_{i=1..n} Sum_{j=1..i} floor((i - 1)/(j + 1)).
Previous Showing 41-42 of 42 results.