A368535
a(n) = Sum_{k=1..n} binomial(k+2,3) * n^(n-k).
Original entry on oeis.org
0, 1, 6, 31, 188, 1510, 16106, 217938, 3577624, 68952495, 1524157870, 37974983321, 1052320304212, 32089921353308, 1067586804710258, 38470738234990580, 1492501011869912496, 62015249735222969325, 2747431806313734355830, 129267455591507496073315
Offset: 0
A229702
Expansion of 1/((1-x)^4*(1-6x)).
Original entry on oeis.org
1, 10, 70, 440, 2675, 16106, 96720, 580440, 3482805, 20897050, 125382586, 752295880, 4513775735, 27082654970, 162495930500, 974975583816, 5849853503865, 35099121024330, 210594726147310, 1263568356885400, 7581410141314171
Offset: 0
a(3) = (6^8 - (125*3^3 + 1200*3^2 + 3805*3 + 4026))/3750 = 440.
A232774
Triangle T(n,k), read by rows, given by T(n,0)=1, T(n,1)=2^(n+1)-n-2, T(n,n)=(-1)^(n-1) for n > 0, T(n,k)=T(n-1,k)-T(n-1,k-1) for 1 < k < n.
Original entry on oeis.org
1, 1, 1, 1, 4, -1, 1, 11, -5, 1, 1, 26, -16, 6, -1, 1, 57, -42, 22, -7, 1, 1, 120, -99, 64, -29, 8, -1, 1, 247, -219, 163, -93, 37, -9, 1, 1, 502, -466, 382, -256, 130, -46, 10, -1, 1, 1013, -968, 848, -638, 386, -176, 56, -11, 1, 2036, -1981, 1816, -1486, 1024
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, -1;
1, 11, -5, 1;
1, 26, -16, 6, -1;
1, 57, -42, 22, -7, 1;
1, 120, -99, 64, -29, 8, -1;
1, 247, -219, 163, -93, 37, -9, 1;
1, 502, -466, 382, -256, 130, -46, 10, -1;
1, 1013, -968, 848, -638, 386, -176, 56, -11, 1;
A357255
Triangular array: row n gives the recurrence coefficients for the sequence (c(k) = number of subsets of {1,2,...,n} that have at least k-1 elements) for k >= 1.
Original entry on oeis.org
2, 3, -2, 4, -5, 2, 5, -9, 7, -2, 6, -14, 16, -9, 2, 7, -20, 30, -25, 11, -2, 8, -27, 50, -55, 36, -13, 2, 9, -35, 77, -105, 91, -49, 15, -2, 10, -44, 112, -182, 196, -140, 64, -17, 2, 11, -54, 156, -294, 378, -336, 204, -81, 19, -2
Offset: 1
First 7 rows:
2
3 -2
4 -5 2
5 -9 7 -2
6 -14 16 -9 2
7 -20 30 -25 11 -2
8 -27 50 -55 36 -13 2
Row 4 gives recurrence coefficients for the sequence
(r(k)) = (A002662(k)) = (0,0,0,1,5,16,42,99,219,...); i.e.,
r(k) = 5*r(k-1) - 9*r(k-2) + 7*r(k-3) - 2*r(k-4),
with initial values (r(0), r(1), r(2), r(3)) = (0,0,0,1).
(Here r(k) = number of subsets of {1,2,...,4} having at least 3 elements.)
-
Table[Binomial[n, k]*(-1)^(k - 1)*(n + k)/n, {n, 1, 12}, {k, 1, n}]
Comments