A086365
n-th Bell number of type D: Number of symmetric partitions of {-n,...,n}\{0} such that none of the subsets is of the form {j,-j}.
Original entry on oeis.org
1, 4, 15, 75, 428, 2781, 20093, 159340, 1372163, 12725447, 126238060, 1332071241, 14881206473, 175297058228, 2169832010759, 28136696433171, 381199970284620, 5383103100853189, 79065882217154085, 1205566492711167004, 19049651311462785947
Offset: 0
a(2)=4 because the relevant partitions of {-2,-1,1,2} are {-2|-1|1|2}, {-2,-1|1,2}, {-2,1|-1,2} and {-2,-1,1,2}.
-
x = 'x + O('x^16);
egf = -1 + exp(-x+sum(j=1,2,(exp(j*x)-1)/j))
/* egf == +x +2*x^2 +5/2*x^3 +25/8*x^4 +... (i.e., for offset 1) */
Vec( serlaplace(egf) )
/* Joerg Arndt, Apr 29 2011 */
A036078
E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=8.
Original entry on oeis.org
1, 2, 13, 127, 1508, 20859, 332557, 6019108, 121462267, 2692076295, 64846340130, 1684713690917, 46916754353013, 1393010598959594, 43889040801834505, 1461369418905803027, 51243270154712083052
Offset: 0
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
- T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
-
mx = 16; p = 8; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
Table[Sum[Binomial[n,k] * 8^k * BellB[k, 1/8] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)
Edited by
N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters.
A036079
E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=9.
Original entry on oeis.org
1, 2, 14, 150, 1942, 29174, 505318, 9957798, 219177942, 5303780758, 139554619206, 3962202725254, 120644298135478, 3918518255860342, 135117086088186662, 4925731652244913766, 189170325211554345366, 7629758975467859662678, 322296334808561664346886
Offset: 0
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
- T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
-
mx = 16; p = 9; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
Table[Sum[Binomial[n,k] * 9^k * BellB[k, 1/9] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)
A036080
E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=10.
Original entry on oeis.org
1, 2, 15, 175, 2452, 39703, 741177, 15771270, 375485507, 9837064575, 280338965720, 8623355105347, 284589703065137, 10022926411599482, 374900187362983015, 14830483377507515247, 618219446355189917804, 27071966121397255354079, 1241912851303663452150377
Offset: 0
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
- T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
-
mx = 16; p = 10; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
Table[Sum[Binomial[n,k] * 10^k * BellB[k, 1/10] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)
A036082
E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=12.
Original entry on oeis.org
1, 2, 17, 231, 3724, 68819, 1464781, 35645040, 973624491, 29313919207, 960689482494, 33997330377817, 1291521482389621, 52395164853506674, 2259005857941805253, 103064324686839195035, 4957382457319437575820, 250592665906288206715951, 13275467282249493427541201
Offset: 0
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
- T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
-
mx = 16; p = 12; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
Table[Sum[Binomial[n,k] * 12^k * BellB[k, 1/12] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)
Comments